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ABSTRACT

The atoms and molecules of interstellar clouds emit photons
when passing from an excited state to a lower energy state.
The resulting emission lines can be detected by telescopes
in the different wavelength domains (radio, infrared, visible,
UV...). Through the excitation and chemical conditions they
reveal, these lines provide key constraints on the local phys-
ical conditions reigning in giant molecular clouds (GMCs),
which constitute the birthplace of stars in galaxies. Inferring
these physical conditions from observed maps of GMCs us-
ing complex astrophysical models of these regions remains
a complicated challenge due to potentially degenerate solu-
tions and widely varying signal-to-noise ratios over the map.
We propose a Bayesian framework to infer the probability
distributions associated to each of these physical parame-
ters, taking a spatial smoothness prior into account to tackle
the challenge of low signal-to-noise ratio regions of the ob-
served maps. A numerical astrophysical model of the cloud
is involved in the likelihood within an approximate Bayesian
computation (ABC) method. This enables to both infer point-
wise estimators (e.g., minimum mean square or maximum
a posteriori) and quantify the uncertainty associated to the
estimation process. The benefits of the proposed approach
are illustrated based on noisy synthetic observation maps.

Index Terms— Approximate Bayesian computation,
Markov chain Monte Carlo, physical conditions, radioas-
tronomy

The first four authors are the main contributors of this paper. The re-
maining authors are listed in alphabetic order.

1. INTRODUCTION

The interstellar medium (ISM), filling the space between the
stars of our Galaxy, is a mixture of gas and microscopic dust
grains. Roughly half of the ISM mass is concentrated in local-
ized overdense regions (occupying only 1-2% of the volume)
called interstellar clouds (see [1, 2] for a general introduction
to the ISM). The most massive of these clouds form complex
filamentary structures called giant molecular clouds, in which
the gravitational collapse of the densest core lead to the for-
mation of new stars [3].

These clouds are dense enough to be opaque to UV pho-
tons, and the gas in their inner part is thus cold and mostly
neutral, allowing the formation of molecules and the devel-
opment of a rich chemistry. The atoms and molecules of
these clouds are excited through thermal collisions, pump-
ing by stellar UV photons or IR photons from thermal dust
emission, or chemical formation pumping, and then deexcite
by emitting photons at specific wavelength characteristic of
the chemical species and their excitation levels. These emis-
sion lines can then be observed by telescopes in the different
wavelength domain (radio domain for rotational transitions,
IR domain mostly for rovibrational transitions and visible/UV
domain mostly for electronic transitions).

The study of the star formation process in GMCs and its
retroaction on the parental cloud thus rests in large part on
the observation of molecular and atomic emission lines. The
information these lines provide on the chemical composition
of the gaz and on the excitation state of the chemical species
can be exploited using complex astrophysical models of these
regions to infer the physical conditions (gas density, temper-
ature, pressure, ionization degree,...) reigning in star forming
regions, providing us with a unique window into the condi-
tions of star formation.



The development of instruments with increasing spectro-
imaging capacities (spectral bandwidth and resolution, field
of view and angular resolution) now allows studies of the spa-
tial distribution of these physical conditions across star form-
ing regions. However, observation maps that now cover ar-
eas not limited anymore to the few brightest positions in the
cloud require dealing with lower signal-to-noise ratios over
large areas of the maps. For instance, the wide field radio ob-
servations of the Orion B GMC obtained by [4], covering a
dynamical range of spatial scales of more than two orders of
magnitude and the full spectral band between 84.5 to 116.5
GHz at a spectral resolution of ∼ 200 kHz, prefigures the
future of astronomical datasets.

Recently, the estimation of such physical condition maps
from infrared observations (with the Hershel space telescope)
of the Carina Nebula, an active star forming region where the
parental cloud is submitted to strong radiative feedback from
young massive star clusters such as Trumpler 14, has been
undertaken in [5] using the Meudon PDR model [6]. This
study used a maximum likelihood estimation (MLE) to con-
strain the thermal pressure of the gas and the incident UV
flux, and concluded to a strong correlation between these pa-
rameters across the map, indicative of a dynamical impact of
radiative feedback. However, ad hoc penalties and constraints
were needed to avoid unphysical solutions in low signal-to-
noise regions. Such an approach presents several shortcom-
ings. Ad hoc constraints need to be designed by trial and error
and are not easily transposable to other datasets, and the jus-
tification of the constraints used remain unclear. Moreover,
even if the aforementioned authors used Monte Carlo experi-
ments to quantify the uncertainty for the physical conditions,
the use of a consistent Bayesian framework [7] has not been
considered.

In this paper, we propose to extend the approach of [5] by
formulating the inference problem in the Bayesian paradigm.
By deriving a Bayesian hierarchical model and an associated
Markov chain Monte Carlo (MCMC) algorithm, this permits
to take into account both model and measurement errors, to
sample possible hyperparameters instead of hand-tuning them
and to derive pointwise estimators while quantifying the un-
certainty for the unknown physical conditions. This quantifi-
cation of uncertainties is essential to guarantee the credibility
of resulting estimates. We include in this framework a spa-
tial smoothness prior based on the idea that the structure of
GMCs is such that lower density regions, less bright and thus
observed at lower signal-to-noise ratio but covering a larger
fraction of the cloud area, have spatial structures of larger typ-
ical scales than denser and brighter regions.

To this purpose, Section 2 presents the proposed Bayesian
hierarchical model and Section 3 derives the MCMC algo-
rithm to sample from the target posterior distribution. Section
4 illustrates the benefits of the proposed approach on a syn-
thetic map presenting some typical regions of ISCs. Finally,
Section 5 draws some final remarks and possible extensions

of this work.

2. BAYESIAN APPROACH

2.1. Problem statement

We assume that we observe ℓ molecular spectral lines, where
L ≤ 200 typically, associated to a spatial map of size N ×N .
These spectral lines are the signature of the molecules which
are present within the ISC. We denote the observed inten-
sity map associated to each line ℓ ∈ [L] by yℓ ∈ RN2

+ ,
where [L] = {1, . . . , L}. Based on the latter, we are inter-
ested in inferring the maps of unknown physical conditions
such as the thermal pressure P, the intensity of incident ra-
diation fields G and the depth of the cloud AV. these 3
parameters are gathered in θij = (Pi,j , Gi,j , AV,i,j) associ-
ated to each pixel at position (i, j) of the observed map. Let
Θ = [P,G,AV] ∈ R3 × RN2

the matrix of parameters.

2.2. Challenges

Defining an accurate model to relate the intensity lines Y
back to the physical conditions Θ raises several challenges.
Even if a coherent model taking into account the physics and
the chemistry of the cloud is available, this model remains
approximate and will always leave room for residual errors
between the observed data and simulations. This error might
be due to model misspecification, limitations from measuring
devices or decisions taken by observatorial astronomers.

In order to cope with these issues, we propose to model
these sources of error by relying on the approximate Bayesian
computation (ABC) approach of [8]. The idea of this ap-
proach is to target a given posterior distribution with an ap-
proximate simulation-based technique. Interestingly, instead
of considering this ABC approach as an approximate one,
the author of [8] considers this approximation as a way to
take into account potential errors coming from both the model
and the measurements. A related idea can be found in [9]
where the authors proposed to learn the distribution of these
errors. Based on these works, we will first define the consid-
ered Bayesian model and the target posterior distribution in
Section 2.3. Then, we will derive in Section 3 a ABC-MCMC
algorithm to target this posterior distribution.

2.3. Bayesian model

The observations yijℓ for each pixel (i, j) and line ℓ are as-
sumed to be unknown quantities related to a physical model
Mℓ(θij) involving unknown physical conditions θij via the
linear model

yijℓ = Mℓ(θij) + ϵijℓ, where ϵijℓ ∼ NR+(0, σ
2), (1)

where σ2 is a known variance andNR+ denotes the truncated
Gaussian distribution on the positive real line since the in-



tensities are assumed to be supported on R+. This (trun-
cated) normal assumption is motivated by the central limit
theorem which states that the limit of the sum of a large num-
ber of unknown independent sources is Gaussian. The func-
tion Mℓ : RD → R+ represents a known correspondence
between physical conditions θij related to pixel (i, j) and the
corresponding intensity of line ℓ. Here, we use an interpola-
tion of the Meudon PDR code [6]. The Meudon PDR code
is a grid which maps more than 1,300 parameters configura-
tions of (P,G,AV ) to 160 standard lines, e.g. those asso-
ciated to the CO intensities. These parameters stand for the
thermal pressure, the intensity of incident radiation fields and
the depth of the cloud, respectively. In real settings, observa-
tions can be corrupted by the detection threshold used by the
astronomers. Indeed, the latter consider that an observation is
detected when the intensity line yijℓ is greater than a known
positive threshold ω. Thus, if the line yijℓ is not detected, they
do not provide yijℓ but the value of the threshold ω. Let ∆
encode whether a line intensity is considered as detected or
not where δijℓ = 1 if yijℓ is detected and δijℓ = 0 otherwise.
Under this statistical model, the likelihood function writes

π(Y|Θ,∆) ∝
L∏

l=1

∏
1≤i,j≤N

[
exp

(
− 1

2σ2

(
yijℓ −Mℓ(θij)

)2)]δijℓ

×

[∫ ω

0

exp

(
− 1

2σ2
(y −Mℓ(θij))

2

)
dy

]1−δijℓ

, (2)

Note that the evaluation of this likelihood involves the numer-
ical simulation of the model Mℓ for physical parameters θij).

Since the parameters to infer stand for physical conditions
of the ISC, their maps are expected to be at least piecewise
continuous. In order to take into account this spatial con-
straint, we consider the total variation (TV) prior distribution
[10] with density

π(Θ) ∝
D∏

d=1

exp

−τd ∑
1≤i,j≤N

∥∥∥∇θ(d)
ij

∥∥∥
 , (3)

where∇θ(d) ∈ RN2

stands for the 2-dimensional gradient of
the map of parameter d, τd > 0 is a regularization parameter
and ∥·∥ is the Euclidean norm.

The application of Bayes’ rule leads to a posterior distri-
bution for parameters θ with density

π(Θ|Y,∆) ∝ π(Y|Θ,∆)π(Θ). (4)

Note that we consider in this paper that the variance σ2 and
the regularization parameters τd are fixed for simplicity rea-
sons. However, if we want to avoid their hand-tuning, we
could also consider them as random variables and estimate
them through a hierarchical Bayesian model.

3. SAMPLING ALGORITHM FOR INFERENCE

3.1. ABC-MCMC

As introduced in Section 2.2, we will target the posterior in
(4) with a special instance of ABC approaches called ABC-
MCMC and depicted in Algorithm 1. This algorithm targets
an arbitrary close approximation πρ of (4) defined by

πρ(Θ|Y) ∝
∫
RN2×L

π(Θ|Z,∆)Kρ

(
∥Z−Y∥

)
dZ, (5)

where Kρ stands for a kernel density. The dependence on ∆
is intentionally omitted for simplicity. Under weak assump-
tions on Kρ and π, the approximate posterior πρ satisfies [11]

lim
ρ→0

πρ(Θ|Y) = π(Θ|Y). (6)

Following [8] and assuming that Kρ is a Gaussian kernel with
variance ρ2, targetting πρ instead of π boils down to consider
that there is an error εijℓ associated to observation yijℓ (from
the model and/or the measurements) with respect to some un-
derlying ‘true value’ zijℓ satisfying

εijℓ ∼ N (zijℓ − yijℓ, ρ
2). (7)

Across iterations t, the so-called instrumental distribution
with density q(·|Θ(t−1)) is used to propose a new random
value of Θ. The likelihood and therefore a numerical sim-
ulation of the physical model with parameter Θ is used to
generate a potential observation Z. Candidates (Θ,Z) are
accepted according to an ABC rejection rule, see Algo. 1.

3.2. Sampling details

In the sequel, the instrumental distribution with density
q(·|Θ(t−1)) is chosen as follows

q(Θ|Θ(t−1)) = π(Θ)

D∏
d=1

NR+

(
θ(d);θ(d,t−1), λ2

dIN2

)
(8)

where for all d, λd > 0 stands for the standard deviation.
Such an instrumental density simply amounts to consider a
random walk around the current value of the parameters pe-
nalized by the prior defined in (3). In order to avoid the dif-
ficult hand-tuning of the variance λd, we consider a Robbins-
Monro type algorithm that updates the values of λd with the
scheme

log(λ
(t+1)
d ) = log(λ

(t)
d ) +

a(t) − a⋆

t0.1
, (9)

where a⋆ is the target acceptance rate and a(t) is the accep-
tance probability at iteration t.

Since this proposal is not differentiable due to the use of
total variations in the prior π(Θ), sampling from the latter



Algorithm 1: ABC MCMC
Input: Posterior (4), procedure to generate data from

the likelihood, proposal density q(·|Θ), kernel
density Kρ and total nb. of iterations TMC

1 % Initialization
2 Generate an initial value Θ(0);
3 for t← 1 to TMC do
4 % Draw a candidate Θ (instrumental distribution)
5 Θ ∼ q(·|Θ(t−1));
6 % Draw the auxiliary variable Z (likelihood)
7 Z ∼ π(·|Θ);
8 % Accept/reject the candidate value
9 Generate u ∼ U[0,1];

10 Set (Θ(t),Z(t)) = (Θ,Z) if u ≤
Kρ

(
∥Z−Y∥

)
π (Θ) q(Θ|Θ(t−1))

Kρ

(∥∥Z(t−1) −Y
∥∥)π

(
Θ(t−1)

)
q(Θ(t−1)|Θ)

;

11 Else set (Θ(t),Z(t)) = (Θ(t−1),Z(t−1));
12 end

Output: Collection of samples
{
Θ(t)

}TMC

t=1
distributed

according to πρ in (5) asymptotically.

is conducted by using the proximal MCMC algorithm of [12]
called MYULA where the proximity operator of the total vari-
ation regularizer has been approximated with the iterative al-
gorithm of [13].

Sampling Z from the likelihood has been done by first in-
terpolating the Meudon PDR code with a trilinear interpola-
tion and then by drawing N2×L univariate random variables.

4. EXPERIMENTS

This section presents the results of the proposed approach on
a 10× 10 synthetic map involving some standard regions that
can be found in ISCs. This permits to quantify the perfor-
mances, in particular the bias, of the proposed model since
the ground truth is known.

4.1. Experimental design

From the 160 available lines, we only considered the 15 lines
associated to the CO molecule. In order to test the proposed
approach, we contaminate the synthetic map with some noise.
To this purpose, we consider a zero-mean Gaussian noise with
standard deviation σ defined by

σ =
Q

3
med (ICO13−12) , (10)

where Q > 0 defines the noise level and med(ICO13−12)
stands for the median value of the CO 13-12 line intensity

for all the observed pixels. As mentioned previously for real-
world situations, the astronomers consider that they detect a
line when the intensity line is greater than a threshold value
ω. When they consider that they do not detect a line, they
replace the observed intensity by an upper limit equal to ω in
the data set. In the sequel, we set Q = 10 and the threshold
values ω are computed for each observation as follows

ω =

√
σ2 +

(
0.2yijℓ

)2
, (11)

In order to model these real cases, we replaced manually the
considered non-detected observations by these upper limits.

Due to the presence of the model Mℓ in (1), the posterior
distribution in (4) is highly non-convex and hence admits sev-
eral maxima. Hence, the good initialization of Algorithm 1
becomes crucial. In order to analyze the behavior of the latter
with respect to (w.r.t.) the initial value Θ(0), we implemented
the proposed algorithm with two initializations namely the
maximum likelihood (MLE) and the maximum a posteriori
estimators (MAP) obtained via an optimization-based algo-
rithm. The fixed parameters have been set to (τ1, τ2, τ3) =
(4.2, 3.6, 13.8) after a grid-search procedure while the stan-
dard deviation ρ in (7) has been adapted to each line by taking
into account the range spanned by the latter. The target accep-
tance rate a⋆ has been set to 0.23 and the number of iterations
TMC has been set to 50,000.

Although not directly comparable, we also implemented
an optimization-based approach whose initialization is the
MLE and which is similar to the one used in [5]. These re-
sults will be used as a reference to study the performance of
the proposed Bayesian approach.

4.2. Results

Figure 1 compares the 10×10 synthetic maps of physical con-
ditions P , G and AV , the MAP estimators obtained with an
optimization algorithm and minimum mean square estimators
(MMSE) obtained with Algorithm 1. The MMSEs obtained
with the proposed approach appear to be coherent with the
proposed model since the main regions of the synthetic map
have been detected. Note that because we both targetted the
approximate posterior πρ instead of π and used another point-
wise estimator (MMSE instead of MAP), the maps obtained
with the proposed approach are different from the ones ob-
tained with the optimization-based algorithm. As expected, a
different initialization leads to a different MMSE but the de-
rived pointwise estimates are still coherent with the inference
task.

Figure 2 depicts the 95% credibility intervals associated
to each physical condition and obtained with the proposed
approach with the MLE initialization. The range of these in-
tervals is shown in log10-scale. The noisy structure of these
credibility maps is mainly due to the very low number of pix-
els (N = 10) which have to be estimated. These credibility
maps are a true benefit of the proposed Bayesian approach



0 2 4 6 8

0

2

4

6

8

Pressure P - Real

105

106

107

108

109

0 2 4 6 8

0

2

4

6

8

Pressure P - MAP

105

106

107

108

109

0 2 4 6 8

0

2

4

6

8

Pressure P - MMSE

105

106

107

108

109

0 2 4 6 8

0

2

4

6

8

G - Real

100

101

102

103

104

105

0 2 4 6 8

0

2

4

6

8

G - MAP

100

101

102

103

104

105

0 2 4 6 8

0

2

4

6

8

G - MMSE

100

101

102

103

104

105

0 2 4 6 8

0

2

4

6

8

AV - Real

5

10

15

20

25

30

35

40

0 2 4 6 8

0

2

4

6

8

AV - MAP

5

10

15

20

25

30

35

40

0 2 4 6 8

0

2

4

6

8

AV - MMSE

5

10

15

20

25

30

35

40

0 2 4 6 8

0

2

4

6

8

Pressure P - Real

105

106

107

108

109

0 2 4 6 8

0

2

4

6

8

Pressure P - MAP

105

106

107

108

109

0 2 4 6 8

0

2

4

6

8

Pressure P - MMSE

105

106

107

108

109

0 2 4 6 8

0

2

4

6

8

G - Real

100

101

102

103

104

105

0 2 4 6 8

0

2

4

6

8

G - MAP

100

101

102

103

104

105

0 2 4 6 8

0

2

4

6

8

G - MMSE

100

101

102

103

104

105

0 2 4 6 8

0

2

4

6

8

AV - Real

5

10

15

20

25

30

35

40

0 2 4 6 8

0

2

4

6

8

AV - MAP

5

10

15

20

25

30

35

40

0 2 4 6 8

0

2

4

6

8

AV - MMSE

5

10

15

20

25

30

35

40

Fig. 1. 10 × 10 synthetic maps of physical parameters P , G
and AV , MAP estimators obtained with an optimization al-
gorithm and minimum mean square estimators (MMSE) ob-
tained with Algorithm 1.
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Fig. 2. 95% credibility intervals associated to physical pa-
rameters P , G and AV obtained with Algorithm 1 by taking
the MLE as starting value.

since they permit to quantify the uncertainty around resulting
estimates.

These results remain preliminary since they are obtained
on a synthetic map. They do not reveal to which extent the
proposed approach might be efficient for high-dimensional
astronomical images since the structure of the image can dif-
fer (e.g., presence of filaments). Nevertheless, this work paves
the way to the full Bayesian analysis of ISCs and the quantifi-
cation of uncertainties for inverse problems encountered in
physics. This direction of research sounds very promising.

5. CONCLUSION

We present a fully Bayesian approach to tackle challenging
inverse problems in astrophysics. We pursue the goal of quan-
tifying the underlying uncertainty by modeling potential mea-
surement errors and by resorting to a simulation-based ABC
method. The results obtained on a synthetic map are encour-
aging and suggest further tests on real and high-dimensional
images.
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