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ABSTRACT
Data augmentation, by the introduction of auxiliary variables, has become an ubiquitous technique to
improve convergence properties, simplify the implementation or reduce the computational time of infer-
ence methods such as Markov chain Monte Carlo ones. Nonetheless, introducing appropriate auxiliary
variables while preserving the initial target probability distribution and offering a computationally effi-
cient inference cannot be conducted in a systematic way. To deal with such issues, this article studies
a unified framework, coined asymptotically exact data augmentation (AXDA), which encompasses both
well-established and more recent approximate augmented models. In a broader perspective, this article
shows that AXDA models can benefit from interesting statistical properties and yield efficient inference
algorithms. In non-asymptotic settings, the quality of the proposed approximation is assessed with several
theoretical results. The latter are illustrated on standard statistical problems. Supplementary materials
including computer code for this article are available online.
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1. Introduction

Starting at least from the 1960s with the seminal paper of
Hartley (1958) on the expectation-maximization (EM) algo-
rithm, introducing auxiliary variables has been a widely adopted
strategy to derive iterative algorithms able to deal with pos-
sibly complicated inference problems. Indeed, either by com-
ing from statistical physics (Swendsen and Wang 1987) or by
the broad statistical community (Dempster, Laird, and Rubin
1977), auxiliary (also called latent) variables have been used to
improve (Duane et al. 1987; Edwards and Sokal 1988; Marnissi
et al. 2018) and/or simplify (Tanner and Wong 1987; Doucet,
Godsill, and Robert 2002) inference methods, such as max-
imum likelihood (ML) estimation or simulation-based ones.
Insightful reviews of these methods were conducted by Besag
and Green (1993), van Dyk and Meng (2001), and Tanner
and Wong (2010). Among many others, slice sampling and
half-quadratic (HQ) methods are archetypal instances of such
auxiliary variable-based methods. These methods, by introduc-
ing auxiliary variables, appear to be an interesting alternative
when sampling cannot be performed directly from a target
distribution π . Nonetheless, the superiority of simulation-based
algorithms based on data augmentation (DA) over classical
Markov chain Monte Carlo (MCMC) methods without DA
is not obvious as pointed out by Polson (1996) and Damien,
Wakefield, and Walker (1999). DA methods have been found
to be slower than single-site update approaches in some cases
(Hurn 1997) and some improvements have been derived to cope
with these problems such as partial decoupling (Higdon 1998)
or the introduction of a working parameter (Meng and van Dyk
1997). Moreover, DA techniques are often used on a case-by-
case basis (Geman and Reynolds 1992; Albert and Chib 1993;
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Geman and Yang 1995; Polson, Scott, and Windle 2013) and
could not be applied in general scenarios due to the absence
of exact DA schemes yielding an efficient inference and low
computation costs.

Similarly to approximate Bayesian computation (ABC)
methods to circumvent intractable likelihoods (Beaumont,
Zhang, and Balding 2002; Sisson, Fan, and Beaumont 2018b),
these limitations can be tackled by considering approximate
DA schemes that become exact asymptotically. For instance,
inspired from the variable splitting technique used in the
alternating direction method of multipliers (ADMM) (Boyd
et al. 2011), Vono, Dobigeon, and Chainais (2019) and Ren-
dell et al. (2020) recently and independently proposed a novel
and broad Bayesian inference framework that can circumvent
limitations of exact DA approaches. By introducing a collection
of instrumental (also called splitting) variables, the aforemen-
tioned authors considered the inference from an approximate
probability distribution which can be simpler, more efficient and
distributed over multiple computational workers (e.g., machines
or kernels).

This article aims at deeply investigating a broad frame-
work coined asymptotically exact data augmentation (AXDA)
which encompasses previously proposed special instances such
as approximate models used in Vono, Dobigeon, and Chainais
(2019), Rendell et al. (2020), among others. More precisely,
Section 2 details how such models can be built in a quasi-
systematic and simple way which is highly appreciable com-
pared to the case-by-case search of computationally efficient DA
schemes. In Section 3, we revisit some already-proposed special
instances of AXDA models to show the potential benefits of
AXDA on specific examples and to exhibit interesting properties
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which can be generally inherited by AXDA approaches. In Sec-
tion 4, we assess quantitatively the bias of AXDA models with
nonasymptotic theoretical results by considering Wasserstein
and total variation distances. Then, Section 5 illustrates the
previous theoretical results and the benefits of the proposed
methodology on several statistical problems. To facilitate the
use of AXDA, we eventually point out that the supplementary
materials involve a dedicated section (Section 5) presenting
how such models can be instantiated to perform efficient infer-
ence through classical simulation-based, variational Bayes (VB),
optimization or expectation-maximization (EM) methods. The
proofs are also given in the supplementary materials, see
Section 1.

2. Asymptotically Exact Data Augmentation

This section introduces AXDA schemes that aim to circumvent
exact DA main issue: the art (van Dyk and Meng 2001) of
finding the exact DA associated to a statistical model and its
inference limitations. For sake of simplicity, with little abuse, we
shall use the same notations for a probability distribution and its
associated probability density function (pdf).

2.1. Motivations

In this article, we are interested in performing the inference of a
variable of interest θ ∈ � ⊆ R

d, where � is a closed convex set
and dim(�) = d, by relying on a probability distribution with
density π writing

π(θ) ∝ exp
(−f (θ)

)
, or π(y|θ) ∝ exp

(−f (y; θ)
)

, (1)

where the potential f taking values in R is such that π defines a
proper, bounded and continuous probability distribution. For
sake of generality, note that π in (1) shall describe various
quantities. First, with a little abuse of notations, π(θ) may simply
refer to a pdf associated to the random variable θ , for example,
its prior distribution π(θ) or its posterior distribution π(θ) �
π(θ |y) when referring to a set of observations denoted by y.
Depending on the problem, we also allow π to stand for a
likelihood function π(y|θ). We will work under this convention
and write explicitly the form of π when required. For sake of
simplicity and clarity, only the case corresponding to π(θ) will
be detailed in this section. The application of the proposed
methodology to π(y|θ) is very similar and can be retrieved by a
straightforward derivation.

We consider situations where direct inference from (1) is
difficult because intractable or computationally prohibitive. To
overcome these issues, an option is to rely on exact DA which
introduces some auxiliary variables stacked into a vector z ∈
Z ⊆ R

k and defines a new density, simpler to handle, such that∫
Z

π(θ , z)dz = π(θ). (2)

Much research has been devoted to these models to simplify
an inference task or to improve the convergence properties of
direct inference approaches (e.g., slice sampling and HQ meth-
ods introduced in Section 1). Nonetheless, these approaches
have several limitations. Indeed, finding a convenient form for

the augmented density to satisfy (2) while leading to efficient
algorithms generally requires some knowledge and can even be
impossible in some cases (Geman and Yang 1995). For instance,
the mixture representation of a binomial likelihood function
based on the Polya-Gamma distribution has been used to derive
a promising Gibbs sampler for logistic regression problems (Pol-
son, Scott, and Windle 2013). Nonetheless, even if this algorithm
has been proved to be uniformly ergodic by Choi and Hobert
(2013), the corresponding ergodicity constant depends expo-
nentially on the number of observations n and on the dimension
of the regression coefficients vector d.

To tackle these limitations, we propose to relax the constraint
(2) and consider an approximate DA model. This will permit
the choice of an augmented density with more flexibility, fix the
issues associated to the initial model and make inference more
efficient in some cases. To this purpose, Section 2.2 presents
the so-called AXDA framework which embeds approximate
DA models controlled by a positive scalar parameter ρ. These
models become asymptotically exact when ρ tends toward 0. Of
course, some assumptions will be required on the approximate
augmented density to guarantee a good approximation. The
quality of this approximation will be assessed in Section 4 with
nonasymptotic theoretical results.

2.2. Model

Instead of searching for an exact data augmentation scheme
(2), some auxiliary variables z can be introduced to define
an approximate but asymptotically exact probability distribu-
tion. One possibility is to introduce an augmented distribution
depending on a parameter ρ > 0 and such that the associated
marginal density defined by

πρ(θ) =
∫
Z

πρ(θ , z)dz, (3)

satisfies the following property.

Property 1. For all θ ∈ �, limρ→0 πρ(θ) = π(θ) .

By applying Scheffé’s lemma (Scheffé 1947), this property yields
the convergence in total variation, that is

∥∥πρ − π
∥∥

TV → 0 as
ρ → 0. A natural question is: how to choose the augmented
density in (3) such that Property 1 is met? In this article, we
assume that Z = � and investigate AXDA schemes associated
to an initial density (1) and defined by the approximate aug-
mented density

πρ(θ , z) = π(z)κρ(z, θ), (4)

where κρ is such that (4) defines a proper density.

Remark 1. When π stands for a product of J densities, that is
π ∝ ∏J

j=1 πj, the proposed approximate model can naturally
be generalized to πρ(θ , z1:J) ∝ ∏J

j=1 πj(zj)κρ(zj, θ). Such a
generalization will for instance be considered in Sections 3.1
and 3.2.

The introduction of the proposed model (4) is aimed at
avoiding a case-by-case search of an appropriate augmented
approach. Although there might exist other marginal densities
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πρ satisfying Property 1, we restrict our analysis to models
where κρ(·, θ) weakly converges toward the Dirac measure at
θ as ρ → 0 (Aguirregabiria, Hernández, and Rivas 2002). This
is a sufficient condition to satisfy Property 1. In the sequel, we
will call AXDA any approach based on (4) and satisfying these
properties.

A natural choice for κρ is to consider a standard kernel K
(Wand and Jones 1995). Based on the latter, we define for all
z, θ ∈ �, κρ(z, θ) ∝z ρ−dK(ρ−1(θ − z)) (Dang and Ehrhardt
2012). Beyond standard kernels but motivated by the same idea
of measuring the discrepancy between z and θ , one can also
build on divergence functions widely used in the optimization
literature to define a potentially asymmetric density κρ such that
for all z, θ ∈ �, κρ(z, θ) ∝z exp(−ρ−1φ(z, θ)) where φ is a
strictly convex function w.r.t. z admitting a unique minimizer
z∗ = θ (Ben-Tal, Margalit, and Nemirovski 2001; Krichene,
Bayen, and Bartlett 2015; Fellows et al. 2019). Specific instances
of such potentials are Bregman divergences such as the logistic
loss and the Kullback-Leibler divergence, see Definition 1.

Definition 1 (Bregman divergence). Let ψ a continuously differ-
entiable and strictly convex function defined on a closed convex
set. The Bregman divergence associated to ψ is defined by

dψ(z, θ) = ψ(z) − ψ(θ) − ∇ψ(θ)T(z − θ). (5)

Additional details associated to standard kernels and Breg-
man divergences are given in Section 2 in the supplementary
materials.

3. Benefits of AXDA by Revisiting Existing Models

Before providing theoretical guarantees for AXDA models, this
section proposes to review some important state-of-the-art
works from the AXDA perspective described in Section 2. We
do not pretend to give new insights about these approaches. We
rather use them to illustrate potential benefits that can be gained
by resorting to the proposed framework. For sake of clarity,
these benefits are directly highlighted in the title of the following
sections before being discussed in the latter.

3.1. Tractable Posterior Inference

This first section illustrates how an AXDA approach can alle-
viate the intractability of an initial posterior distribution π and
significantly aid in the computations.

To this purpose, we consider the case where the posterior
distribution π is intractable. Such a model for instance appears
when π involves a constraint on some set (Liechty, Liechty, and
Müller 2009), admits a nonstandard potential function such as
the total variation norm (Chambolle et al. 2010; Pereyra 2016;
Vono, Dobigeon, and Chainais 2019) or yields complicated con-
ditional posterior distributions (Holmes and Mallick 2003). To
simplify the inference, the aforementioned authors have con-
sidered special instances of AXDA by relying on an additional
level involving latent variables z, leading a hierarchical Bayesian
model. In these cases, AXDA has been invoked to move a
difficulty to the conditional posterior of z where it can be dealt
with more easily by using standard inference algorithms, see

Section 5 in the supplementary materials for more details. The
following example, derived from Holmes and Mallick (2003),
illustrates this idea.

Example 1. Let y ∈ R
n be a set of observations and X =

(x1, . . . , xn)T ∈ R
n×d a design matrix filled with covariates. We

consider a generalized nonlinear model which writes

yi|θ ∼ p(yi | g−1(h(xi, θ)), σ 2), ∀i ∈ [n], (6)
θ ∼ N (θ | 0d, ν2Id), (7)

where p belongs to the exponential family and has mean
g−1(h(xi, θ)) and variance σ 2 where g is a link function. As
in classical regression problems, we are interested in inferring
the regression coefficients θ ∈ R

d. In the sequel, we set the
nonparametric model h to be

h(xi, θ) =
k∑

j=1
θjB(xi, kj), (8)

where B(xi, kj) is a nonlinear function of xi (e.g., regression
splines) and kj is the knot location of the jth basis. The difficulty
here is the nonlinearity of h which, combined with the non-
Gaussian likelihood, rules out the use of efficient simulation
schemes to sample from the posterior π(θ |y). To mitigate this
issue, Holmes and Mallick (2003) proposed to rely on an addi-
tional level which boils down to consider the approximate model
(4). More specifically, the aforementioned authors treated the
nonlinear predictor h as a Gaussian random latent variable
which leads to the approximate model

yi|zi ∼ p(yi | g−1(zi), σ 2), ∀i ∈ [n], (9)
zi|θ ∼ N (zi | h(xi, θ), ρ2), ∀i ∈ [n], (10)
θ ∼ N (θ | 0d, ν2Id). (11)

Here, AXDA has been applied only to the likelihood function
with κρ chosen as the univariate normal distribution (10) lead-
ing to a smoothed likelihood function. The main advantage
of relying on such a model is that the posterior conditional
distribution πρ(θ |z, X), with z = [z1, . . . , zn]T , is now a multi-
variate normal distribution. In addition, by moving the difficulty
induced by h to the conditional posterior of zi, we are now
dealing with a generalized linear model (GLM) where standard
techniques can be applied (Albert and Chib 1993; Polson, Scott,
and Windle 2013).

Beyond the widely used Gaussian choice for κρ (Holmes and
Mallick 2003; Liechty, Liechty, and Müller 2009; Barbos et al.
2017; Vono, Dobigeon, and Chainais 2019), more general AXDA
approaches can be built by taking inspiration from these works.
To this purpose, we recommend to choose κρ w.r.t. the prior
and likelihood at stake. For instance, when a Poisson likelihood
function and a complex prior distribution on its intensity θ

are considered, one option for φ (see Section 2.2) would be an
Itakura–Saito divergence since it preserves the positivity con-
straint on θ and yields the well-known Gamma-Poisson model
(Canny 2004).
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Figure 1. Concept of localization. Comparison between the initial (left) and the localized hierarchical Bayesian (right) models with n the number of observations yi .

3.2. Distributed Inference

When data are stored on multiple machines and/or one is inter-
ested in respecting their privacy, this section illustrates how
AXDA can be resorted to perform distributed computations.

Let consider observed data {yi, xi}n
i=1, where xi stands for the

covariates associated to observation yi, which are distributed
among B nodes within a cluster. By adopting a prior ν(θ) and by
assuming that the likelihood can be factorized w.r.t. the B nodes,
the posterior distribution of the variable of interest θ writes

π(θ |y, X) ∝ ν(θ)

B∏
b=1

∏
i∈node b

exp
(−fi(yi; h(xi, θ))

)
. (12)

Such models classically appear in statistical machine learning
when GLMs (Dobson and Barnett 2008) are considered. In these
cases, h(xi, θ) = xT

i θ . Due to the distributed environment,
sampling efficiently from (12) is challenging and a lot of “divide-
and-conquer” approaches have been proposed in the past few
years to cope with this issue (Wang and Dunson 2013; Scott
et al. 2016). These methods launch independent Markov chains
on each node b and then combine the outputs of these local
chains to obtain an approximation of the posterior of interest
(12). Nonetheless, the averaging schemes used to combine the
local chains might lead to poor approximations when π is high-
dimensional and non-Gaussian. Instead, considering a special
instance of AXDA circumvents the previously mentioned draw-
backs by introducing local auxiliary variables on each node such
that

πρ(θ , z|y, X) ∝ ν(θ)

B∏
b=1

∏
i∈node b

exp
(−fi(yi; zi)

)
κρ(zi, h(xi, θ)).

(13)

The posterior distribution of the auxiliary variables condi-
tionally to θ only depends on the data available at a given
node. Based on this nice property, the joint posterior can be
sampled efficiently with a Gibbs sampler, see Rendell et al.
(2020) for a comprehensive review. We emphasize that the ben-
efits described in this section for Monte Carlo sampling also
hold when one wants to use other types of algorithms (e.g.,
expectation-maximization or variational Bayes), see Section 5
in the supplementary materials.

3.3. Robust Inference

By noting that classical robust hierarchical models fall into the
proposed framework, this section shows that AXDA is also a rel-
evant strategy to perform robust inference by coping with model
misspecification by modeling additional sources of uncertainty.

Considering a well-chosen demarginalization procedure is
known to yield robustness properties in some cases (Robert
and Casella 2004). Some approaches took advantage of this
idea to build robust hierarchical Bayesian models w.r.t. possible
outliers in the data. For instance, such models can be built by
allowing each observation to be randomly drawn from a local
statistical model, as described in the recent review of Wang and
Blei (2018). This “localization” idea is illustrated in Figure 1.
Many of these models can be viewed as particular instances of
AXDA. Indeed, assume that n data points yi are independently
and identically distributed (iid) defining the likelihood function

π(y|θ) ∝
n∏

i=1
π(yi|θ), (14)

where θ ∈ � is a common parameter. Applying AXDA as
described in Section 2 by introducing n d-dimensional auxiliary
variables stacked into the vector z1:n leads to the augmented
likelihood

πρ(y, z1:n|θ) ∝
n∏

i=1
π(yi|zi)κρ(zi, θ). (15)

The statistical model defined by (15) implies a hierarchical
Bayesian model similar to the localized one depicted in Fig-
ure 1b and corresponds in general to an approximation of the
initial one, see Example 2.

Example 2 (Robust logistic regression). Assume that for all i ∈
[n], π(yi|θ) = B

(
σ

(
xT

i θ
))

, where B stands for the Bernoulli
distribution, σ for the sigmoid function, x = [x1, . . . , xn] for
the transpose of the design matrix and θ for the regression
coefficients vector to infer. Then as proposed by Wang and
Blei (2018), one can robustify the inference by assuming that
each observation yi is drawn from a local and independent
model B

(
σ

(
xT

i zi
))

associated to an auxiliary parameter zi ∼
N (θ , ρ2Id). In this case, κρ(z, θ) ∝ ∏n

i=1 N (zi | θ , ρ2Id).

Beyond the convenient Gaussian prior κρ , its choice can be
motivated by robust loss functions. In the statistical machine
learning literature, the absolute or Huber losses are of common
use (She and Owen 2011). In Bayesian linear inverse problems
considered in the signal processing community, it is classical
to approximate a complicated forward physical model to yield
tractable computations. If the latter can be written as y =
h(θ) + ε, with ε ∼ π(ε), then introducing a latent variable
z ∼ κρ(z, h(θ)) such that y = z + ε allows to take into
consideration the model approximation. In those cases, one can
set κρ to be the distribution of the modeling error which could
be adjusted thanks to some expertise.
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3.4. Inheriting Sophisticated Inference Schemes From ABC

Finally, this section shows that AXDA models, by sharing strong
connections with ABC, might inherit sophisticated algorithms
to sample from (4).

ABC stands for a family of methods that permit to cope
with intractable likelihoods by sampling from the latter instead
of evaluating them. In a nutshell, if one’s goal is to infer a
parameter θ based on a posterior of interest, the simplest ABC
rejection sampler is as follows. At iteration t, draw a candidate
θ (t) from the prior, generate pseudo-observations z from the
likelihood given this candidate and accept θ (t) if z = y where
y is the observations vector. Many more sophisticated ABC
samplers have been derived. We refer the interested reader to the
recent review by Sisson, Fan, and Beaumont (2018a) for more
information about ABC methods.

Among a huge literature on ABC (also called likelihood-
free) methods, noisy ABC approaches proposed and motivated
by Fearnhead and Prangle (2012) and Wilkinson (2013) are
strongly related to AXDA. Indeed, only comparing the under-
lying models, AXDA with observation splitting is equivalent
to noisy ABC. To see this, let π(y|θ) stand for an intractable
likelihood. Noisy ABC replaces the exact inference based on π

by considering the pseudo-likelihood with density

πρ(y|θ) �
∫

�

πρ(y, z|θ)dz =
∫

�

π(z|θ)κρ(z, y)dz. (16)

This density has exactly the same formulation as the one
defined in (4) except that noisy ABC splits the observations
y instead of the parameter of interest θ . Capitalizing on this
equivalence property, also pointed out by Rendell et al. (2020),
one can derive efficient algorithms for AXDA from the ABC
framework. For instance, Rendell et al. (2020) recently built
on the works of Beaumont, Zhang, and Balding (2002) and
Del Moral, Doucet, and Jasra (2012) in the ABC context to
propose a bias correction approach and a sequential Monte
Carlo (SMC) algorithm avoiding the tuning of the tolerance
parameter ρ. Obviously, many other inspirations from ABC
can be considered, such as the parallel tempering approach of
Baragatti, Grimaud, and Pommeret (2013) among others, to
make the inference from an AXDA model more flexible and
efficient.

4. Theoretical Guarantees

By building on existing approaches, Section 3 showed that
AXDA can be used in quite general and different settings
depending on one’s motivations. To further promote the use
of such approximate augmented models, this section goes
beyond the empirical bias analysis performed by previous
works and provides quantitative bounds on the error between
the initial and the approximate model. More precisely, for
a fixed tolerance parameter ρ > 0, nonasymptotic results
on the error associated to densities, potentials and credibil-
ity regions are derived. We will assume all along this sec-
tion that � = R

d. The proofs of the results of this
section can be found in Section 1 of the supplementary
materials.

4.1. Results for Standard Kernels

In this section, we consider the case κρ(z, θ) ∝ ρ−dK(ρ−1(θ −
z)) where K is a kernel, see Section 2.2. Under this model, πρ

stands for the convolution of π and κρ and the following results
hold.

Proposition 1. Let π ∈ L1. The marginal with density πρ in (3)
has the following properties.

(i) Let π stand for a pdf associated to the random variable θ

andEκρ (X) = 0. Then, the expectation and variance under
πρ are given by

Eπρ (θ) = Eπ (θ), (17)
varπρ (θ) = varπ (θ) + varκρ (θ). (18)

(ii) supp(πρ) ⊆ S where S is the closure of {x + z; x ∈
supp(π), z ∈ supp(κρ)}. The notation supp(h) = {x ∈
X | h(x) 
= 0} refers to the support of a function h : X →
R.

(iii) If both π and κρ are log-concave, then πρ is log-concave.
(iv) If κρ ∈ C∞(Rd) and |∂kκρ | is bounded for all k ≥ 0, then

πρ is infinitely differentiable w.r.t. θ .

Proposition 1 permits to draw several conclusions about
the inference based on πρ . First, the infinite differentiability of
πρ (Property (iv)) implies that it stands for a smooth approx-
imation of π , see Figure 5 in Section 5.2. Second, Property
(i) of Proposition 1 is reassuring regarding the inference task.
Indeed, if π stands for a prior distribution, then considering the
approximation πρ simply corresponds to a more diffuse prior
knowledge around the same expected value, see Section 5.2.
Thus, more weight will be given to the likelihood if a posterior
distribution is derived with this prior. On the other hand, if
π stands for a likelihood, then considering the approximation
πρ yields the opposite behavior: the likelihood becomes less
informative w.r.t. the prior. This idea is directly related to robust
hierarchical Bayesian models discussed in Section 3.3.

We now provide quantitative bounds on the approximation
implied by considering the marginal πρ instead of π . For p ≥ 1,
we define the p-Wasserstein distance between π and πρ by

Wp(π , πρ) (19)

=
(

min
μ

{∫
Rd

∫
Rd

‖θ − z‖p
2 dμ(z, θ); μ ∈ �(πρ , π)

})1/p
,

where �(πρ , π) is the set of probability distributions μ(θ , z)
with marginals πρ and π w.r.t. θ and z, respectively. Under mild
assumptions on the kernel K, Proposition 2 gives a simple and
practical upper bound on (19).

Proposition 2. Assume that πρ in (3) stands for a pdf asso-
ciated to the variable θ . Let p ≥ 1 such that mp �(∫

Rd
‖u‖p

2 K(u)du
)1/p

< ∞. Then, we have

Wp(π , πρ) ≤ ρmp. (20)

Note that (20) holds without assuming additional assump-
tions on the initial density π such as infinite differentiability.
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Table 1. Closed-form expressions of m2 appearing in (20) for multivariate generalizations of standard kernels where d denotes the dimension.

Gaussian Cauchy Laplace Dirichlet Uniform Triangular Epanechnikov

m2
√

d –
√

2d –
√

d/3
√

d/6
√

d/5

If the latter is assumed w.r.t. the parameter of interest θ , then
one can estimate the bias π − πρ with a Taylor expansion
of π similarly to bias analysis in ABC, see Sisson, Fan, and
Beaumont (2018b). Table 1 gives closed-form expressions of m2
for the multivariate generalizations of standard kernels. One
can see that the constant m2 has the same dependence w.r.t.
the dimension d for the considered standard kernels K. Hence,
in high-dimensional scenarios, the approximation quality will
be more affected by an inappropriate value for the tolerance
parameter ρ rather than by the choice of K. In Section 5, we
illustrate Proposition 2 with numerical experiments.

4.2. Pointwise Bias for Bregman Divergences

In complement to Section 4.1 where κρ was built using kernels,
we now analyze the bias induced by considering πρ when κρ is
derived from a Bregman divergence dψ (see Definition 1), that is

κρ(z, θ) ∝ exp
(

−dψ(z, θ)

ρ

)
. (21)

Under regularity assumptions on both π and κρ , Proposition 3
shows the dependence of the pointwise bias πρ − π w.r.t. to the
tolerance parameter ρ when the latter is sufficiently small.

Proposition 3. Assume that π is analytic and twice differentiable
on R

d and so does dψ w.r.t. its first argument. Let θ ∈ R
d such

that both Hπ (θ) and Hdψ
(θ)−1 exist and are continuous, where

Hπ (θ) is the Hessian matrix of π and Hdψ
(θ) � ∂2dψ(z,θ)

∂z2

∣∣∣
z=θ

is the Hessian matrix associated to dψ(·, θ). Then, if

• ‖Hπ‖ ≤ C < ∞
•

∥∥Hdψ

∥∥ ≥ c > 0,

it follows that

πρ(θ) − π(θ) = O(
√

ρ). (22)

In addition, if we have
∫
Rd

uκρ(θ − √
ρu, θ)du = 0d, then

πρ(θ) − π(θ) = ρ

2
Trace

(
Hπ (θ)Hdψ

(θ)−1) + o(ρ). (23)

Note that when ψ(z) = ‖z‖2
2 /2, κρ stands for a Gaussian

smoothing kernel, see Section 4.1. In that case, we have the
sanity check that the dependence w.r.t. ρ of the bias between π

and πρ in (23) is the same as the one derived by Sisson, Fan, and
Beaumont (2018b) when interpreting κρ as a kernel.

4.3. A Detailed Nonasymptotic Analysis for Gaussian
Smoothing

The previous sections gave quantitative approximation results
for a large class of densities κρ built either via a kernel or a

Bregman divergence. In this section, we provide complementary
results by restricting our analysis on the case

κρ(z, θ) = N (z|θ , ρ2Id). (24)

This particular yet convenient assumption will allow to com-
plement and sharpen results of Section 4.1 by deriving quan-
titative bounds which take into account the regularity prop-
erties of f . Furthermore, these bounds can be extended to
a sum of potential functions f = ∑

i fi and used to
assess the bias associated to both log-densities and credibil-
ity regions. This analysis is also motivated by the fact that
the Gaussian smoothing case has been widely advocated in
the literature since it generally leads to simple inference steps
(Holmes and Mallick 2003; Giovannelli 2008; Liechty, Liechty,
and Müller 2009; Dümbgen and Rufibach 2009), and can be
related to both the ADMM in optimization (Boyd et al. 2011;
Vono, Dobigeon, and Chainais 2019) and the approximation
involved in proximal MCMC methods (Pereyra 2016; Dur-
mus, Moulines, and Pereyra 2018; Salim, Koralev, and Richtarik
2019). Unfortunately, a straightforward generalization of the
proof techniques used in the sequel does not give informa-
tive upper bounds for smoothing associated to other Bregman
divergences.

4.3.1. Assumptions
To derive nonasymptotic bounds between quantities related to
πρ defined in (3) and π in (1), some complementary assump-
tions on f = − log π will be required. They are detailed
hereafter. For simplicity and with a little abuse of notations, we
also denote here by f (θ) the potential associated to (1) when
π(y|θ) stands for a likelihood.

(A1) f is Lf -Lipschitz w.r.t. ‖·‖2, that is ∃ Lf ≥ 0 such that for
all θ , η ∈ R

d, |f (θ) − f (η)| ≤ Lf ‖θ − η‖2. When π is a
likelihood, it is further assumed that Lf is independent of
y.

(A2) f is continuously differentiable and has an Mf -Lipschitz
continuous gradient w.r.t. ‖·‖2, that is ∃ Mf ≥ 0 such that
for all θ , η ∈ R

d,
∥∥∇f (θ) − ∇f (η)

∥∥
2 ≤ Mf ‖θ − η‖2.

(A3) f is convex, that is for every α ∈ [0, 1], θ , η ∈ R
d, f (αθ +

(1 − α)η) ≤ αf (θ) + (1 − α)f (η).

(A4) Mf =
∫
Rd

∥∥∇f (θ)
∥∥2

2 π(θ)dθ < ∞.

Assumptions (A1), (A2), and (A3) on the potential f stand for
standard regularity assumptions in the optimization literature
and cover a large class of functions f (Beck and Teboulle 2009).
In the broad statistical community, (A1) has been used by Dur-
mus, Moulines, and Pereyra (2018) to derive non-asymptotic
bounds on the total variation distance between probability dis-
tributions while (A2) stands for a sufficient condition to have a
strong solution to the overdamped Langevin stochastic differen-
tial equation (Durmus and Moulines 2017).
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Under the previous assumptions (not used all at once),
nonasymptotic upper bounds on the total variation distance
between πρ and π are derived in Section 4.3.2. Then, Sec-
tions 4.3.3 and 4.3.4 take advantage of this bound to state
theoretical properties on the potential functions and credibility
regions.

4.3.2. Nonasymptotic Bounds on the Total Variation
Distance

In this section, we make additional regularity assumptions on
the potential f to show quantitative results depending explicitly
on regularity constants associated to f . Two different cases will
be considered, namely Lipschitz potentials, and differentiable,
gradient-Lipschitz and convex ones.

4.3.2.1. Lipschitz Potential. When the potential function f is
assumed to be Lipschitz continuous but not necessarily contin-
uously differentiable, the following result holds.

Theorem 1. Let a potential function f satisfy (A1). Then,∥∥πρ − π
∥∥

TV ≤ 1 − �d(ρ), (25)

where

�d(ρ) = D−d(Lf ρ)

D−d(−Lf ρ)
. (26)

The function D−d is a parabolic cylinder function defined for all
d > 0 and z ∈ R by

D−d(z) = exp(−z2/4)

�(d)

∫ +∞

0
e−xz−x2/2xd−1dx. (27)

As expected from Property 1, note that this bound tends
toward zero when ρ → 0. Additionally, this bound depends
on few quantities that can be computed, bounded or approxi-
mated in real applications: the dimension of the problem d, the
Lipschitz constant Lf associated to the regularized potential f
and the tolerance parameter ρ. In the limiting case ρ → 0, the
following equivalent function for the upper bound derived in
(25) holds.

Corollary 1. In the limiting case ρ → 0, we have

∥∥πρ − π
∥∥

TV ≤ ρLf

2
√

2�

(
d + 1

2

)

�

(
d
2

) + o(ρ), (28)

where for all z > 0 as �(z) =
∫ +∞

0
xz−1e−xdx.

Under some regularity conditions (here Lipschitz conti-
nuity) on the potential function f , Proposition 1 states that∥∥πρ − π

∥∥
TV grows at most linearly w.r.t. the parameter ρ and

w.r.t. Lf when ρ is sufficiently small. Moreover, using Stirling-
like approximations when d is large in the equivalence relation
(28) may give a mild dependence on the dimensionality of
the problem in O

(
Lf d1/2). Potential functions verifying the

hypothesis of Theorem 1 are common in machine learning and
signal/image processing problems, see Section 3 in the online

supplementary materials. As an archetypal example, the sparsity
promoting potential function defined for all θ ∈ R

d by f (θ) =
τ ‖θ‖1 with τ > 0 is Lipschitz continuous with Lipschitz
constant Lf = τ

√
d and satisfies Theorem 1 and Proposition 1.

In this case, the dependence of (28) is linear w.r.t. d when d is
large and ρ is small. Note also that continuously differentiable
functions on a compact set are Lipschitz continuous.

4.3.2.2. Convex and Gradient-Lipschitz Potential. We now
show a complementary result by assuming f to be convex
and continuously differentiable with a Lipschitz-continuous
gradient.

Theorem 2. Let a potential function f satisfy (A2), (A3) and
(A4). Then, when π stands for a pdf associated to θ , we have

∥∥πρ − π
∥∥

TV ≤ 1 − 1
(1 + 2ρ2Mf )d/2

(
1 − ρ4Mf Mf

1 + 2ρ2Mf

)
.

(29)

In the limiting case ρ → 0, the upper bound in (29) has a
simpler expression as shown hereafter.

Corollary 2. In the limiting case ρ → 0, we have∥∥πρ − π
∥∥

TV ≤ ρ2dMf + o(ρ2). (30)

Note that the dependences w.r.t. both ρ and d in Corollaries 1
and 2 are similar to the ones found by Nesterov and Spokoiny
(2017) for optimization purposes.

Figure 2 gives the behavior of the upper bounds in (25) and
(29) w.r.t. the dimensionality d of the problem ranging from 1
to 106 and as a function of ρ in log-log scale. The linear (resp.
quadratic) relation between this upper bound and ρ shown
in (28) (resp. (30)) is clearly observed for small values of ρ.
Nonetheless, these upper bounds are not a silver bullet. Indeed,
as expected, for a fixed value of the parameter ρ, the approxi-
mation error increases as the dimension d grows. Thus, these
bounds suffer from the curse of dimensionality and become
non-informative in high-dimension if ρ is not sufficiently small.

Theorem 1 is easily extended to the case where the initial
density π is expressed as a product of several terms. If π stands
for the pdf associated to the variable θ , this boils down to
considering

π(θ) ∝
J∏

j=1
πj(θ) ∝ exp

⎛
⎝−

J∑
j=1

fj(θ)

⎞
⎠ , (31)

where for all j ∈ [J], fj : Rd → R, and a natural generalization
of AXDA when applied to each πj, which writes

πρ(θ , z1:J) ∝
J∏

j=1
πj(zj)κρj(zj; θ)

∝ exp

⎛
⎝−

J∑
j=1

fj(zj) + 1
2ρ2

j

∥∥zj − θ
∥∥2

2

⎞
⎠ . (32)

Under this product form, we have the following corollary.
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Figure 2. Behavior of the quantitative bounds shown in Theorems 1 and 2 w.r.t. ρ in log-log scale for a set of dimensions d. The other quantities appearing in the bounds
have been set to 1.

Corollary 3. For all j ∈ [J], let fj satisfy (A1). Then,

∥∥πρ − π
∥∥

TV ≤ 1 −
J∏

j=1
�

(j)
d (ρj), (33)

where �
(j)
d (ρj) = D−d(Lfjρj)/D−d(−Lfjρj).

Unfortunately, Theorem 2 cannot be extended to the multiple
splitting scenario. We are nevertheless confident that quantita-
tive bounds can be found with different proof techniques but
this task goes beyond the scope of this article.

4.3.3. Uniform Bounds on Potentials
From an optimization point of view, it is quite common to
consider potential functions associated to densities. For such
applications, we give hereafter a quantitative uniform bound
on the difference between the potential functions associated to
π and πρ . Similarly to the definition of the potential function
f in (1), we define the potential function fρ associated to the
approximate marginal πρ in (3), for all θ ∈ R

d, by

fρ(θ) = − log
∫
Rd

exp
(−f (z)

)
κρ(z, θ)dz. (34)

By considering a Gaussian smoothing kernel κρ , the potential fρ
becomes

fρ(θ) = − log
∫
Rd

exp
(

−f (z) − 1
2ρ2 ‖z − θ‖2

2

)
dz

+ d
2

log(2πρ2). (35)

Note that fρ(θ) appears as a regularized version of f (θ).

Proposition 4. Let f satisfy (A1). Then, for all θ ∈ R
d,

Lρ ≤ fρ(θ) − f (θ) ≤ Uρ , (36)

with

Lρ = log Nρ − log D−d(−Lf ρ), (37)
Uρ = log Nρ − log D−d(Lf ρ), (38)

and

Nρ = 2d/2−1� (d/2)

�(d) exp
(

L2
f ρ

2/4
) . (39)

It is easily observed that these bounds are informative in the
limiting case ρ → 0 since they both tend toward zero.

4.3.4. Uniform Bounds on Credibility Regions
When π stands for the density associated to a posterior distri-
bution, one advantage of Bayesian analysis is its ability to derive
the underlying probability distribution of the variable of interest
θ and thereby to provide credibility information under this dis-
tribution. This uncertainty information is particularly relevant
and essential for real-world applications. Since the marginal πρ

stands for an approximation of the original target distribution π ,
it is important to control the credibility regions under πρ w.r.t.
those drawn under π . The control in total variation distance
given by Theorem 1 is already a good indication. However, it is
possible to quantify more precisely the difference between the
credible regions (Robert 2001) with confidence level (1 − α)
under πρ and π , as stated below.

Proposition 5. Let π be a posterior distribution associated to θ

and f such that (A1) is verified. Let Cρ
α an arbitrary (1 − α)-

credibility region under πρ , that is Pπρ

(
θ ∈ Cρ

α

) = 1 − α with
α ∈ (0, 1). Then,

(1 − α)
Nρ

D−d(−Lf ρ)
≤

∫
Cρ

α

π(θ)dθ

≤ min
(

1, (1 − α)
Nρ

D−d(Lf ρ)

)
, (40)

where Nρ is defined in (39).

Proposition 5 states that the coverage of π under Cρ
α can

be determined for a fixed value of ρ. Thus, it is even possible
to obtain a theoretical comprehensive description of Cρ

α w.r.t.
the initial target density π before conducting an AXDA-based
inference. The bounds in (40) permit to choose a parameter ρ

to ensure a prescribed coverage property. The behavior of these
bounds w.r.t. ρ is the same as in Section 4.3.2, that is, linear
behavior w.r.t. ρ when this parameter is sufficiently small.

5. Numerical Illustrations

This section illustrates the quantitative results shown in Sec-
tions 4.1 and 4.3 on three different examples which classically
appear in statistical signal processing and machine learning. As
shown in Table 1, the bias induced by considering πρ is mostly
driven by the value of the tolerance parameter ρ rather than by
the choice of κρ . Hence, for simplicity, most of the numerical
illustrations hereafter consider the case where κρ is a Gaussian



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 9

smoothing kernel. Additional illustrations can be found in the
online supplementary materials.

5.1. Multivariate Gaussian Example

We start by performing a sanity check with the simple case
where π stands for a multivariate Gaussian density that is

π(θ) = N (θ |μ, �), (41)

where � is assumed to be positive definite. If κρ(·, θ) is taken to
be Gaussian density with mean θ and covariance matrix ρ2Id,
then one can show that

πρ(θ) = N (θ |μ, � + ρ2Id). (42)

In particular, let consider the univariate setting, that is � = R,
� = σ 2. In this case, the variance under πρ is σ 2 + ρ2 and
simply corresponds to the variance under π inflated by a factor
ρ2. Therefore, the approximation will be reasonable if ρ2/σ 2

is sufficiently small, see Figure 3. In this figure, we also show
the approximation induced by considering a uniform kernel
instead of a Gaussian one. The smoothing via the uniform kernel
performs slightly better than Gaussian smoothing due to its
lower variance. In both cases, the approximation is reasonable
for small ρ although πρ , built with a uniform kernel, no longer
belongs to the Gaussian family.

To illustrate the proposed upper bounds on both 2-
Wasserstein and total variation distances, we consider a covari-
ance matrix � which stands for a squared exponential matrix
commonly used in applications involving Gaussian processes
(Higdon 2007) and which writes

�ij = 2 exp

(
− (si − sj)2

2a2

)
+ 10−6δij, ∀i, j ∈ [d], (43)

where a = 1.5, si,i∈[d] are regularly spaced scalars on [−3, 3] and
δij = 1 if i = j and zero otherwise.

Figure 4 shows the behavior of the quantitative bounds
derived in Proposition 2 and Theorem 2 for d ∈ {10, 100}. The
Gaussian case allows to compute exactly W2(π , πρ) by noting
that W2

2(π , πρ) = Trace(� + ρ2Id − 2ρ�1/2). On the other
hand,

∥∥π − πρ

∥∥
TV has been estimated by using a Monte Carlo

approximation. One can note that the general upper bound
on the 2-Wasserstein distance is quite conservative for small
ρ since it does not catch the behavior in O(ρ2) when ρ is
small. This is essentially due to the fact that this bound only
assumes a finite moment property and does not require any
regularity assumptions on π such as differentiability or strong
convexity of its potential. On the contrary, the bound on the
total variation distance, derived under stronger assumptions,
manages to achieve a rate of the order O(ρ2) for small ρ.

Figure 3. Bias between πρ and π in the case � = R, π = N (μ, σ 2) with μ = 0 and σ = 1. (left) πρ is built with a Gaussian kernel N (0, ρ2) and (right) with a uniform
kernel on [−ρ, ρ]. Note that the curves associated to π and πρ for ρ = 0.1 are overlapping.

Figure 4. For d ∈ {10, 100}, illustration of the quantitative bounds (20) and (29) associated to 2-Wasserstein and total variation distances, respectively. The decay inO(ρ2)

is shown via the dashed line Cρ2 where C is a constant.
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5.2. Sparse Linear Regression

We study here a generalized version of the least absolute shrink-
age and selection operator (lasso) regression problem analyzed
by Park and Casella (2008). We assume a standard linear regres-
sion problem where centered observations y ∈ R

n are related
to the unknown parameters θ ∈ R

d via the model y = Xθ + ε,
where X ∈ R

n×d stands for a known standardized design matrix
and ε ∼ N (0n, σ 2In). By considering a generalized Laplacian
prior distribution for θ , the target posterior distribution has
density for all θ ∈ R

d,

π(θ) � π(θ |y) ∝ exp
(

− 1
2σ 2

∥∥y − Xθ
∥∥2

2 − g(Bθ)

)
, (44)

where g(Bθ) = τ ‖Bθ‖1 with τ > 0 and B ∈ R
k×d an arbitrary

matrix acting on θ . The choice of such a prior may promote
a form of sparsity (lasso). For instance, this matrix B might
stand for a pth order difference operator (Bredies, Kunisch, and
Pock 2010) which is highly used in signal and image processing
problems. As an archetypal example, the case p = 1 leads to the
well-known total variation regularization function (Chambolle
et al. 2010) used to recover piecewise constant signals.

Note that because of the presence of the matrix B, finding an
exact data augmentation leading to an efficient sampling scheme
is not possible for the general case B 
= Id. Instead, an AXDA
model makes the posterior sampling task possible. Indeed, by
regularizing the prior with a Gaussian term, the joint density πρ

writes

πρ(θ , z) ∝ exp
(
− 1

2σ 2
∥∥y − Xθ

∥∥2
2 − g(z) − 1

2ρ2 ‖Bx − z‖2
2

)
.

(45)

By resorting to a Gibbs algorithm to sample from (45), one
can now use a simple data augmentation scheme (Park and
Casella 2008) to sample from the z-conditional. On the other
hand, sampling from the θ-conditional, which is a multivariate
Gaussian distribution, can be undertaken efficiently with state-
of-the-art approaches (Papandreou and Yuille 2010; Barbos et al.
2017; Marnissi et al. 2018).

In this specific case, the potential gρ associated to the
smoothed prior distribution (see (35)) has a closed-form expres-
sion given for all θ ∈ R

d, by

gρ(θ) = k
2

log(2πρ2)

− log
k∏

i=1

∫
R

exp
(

−τ |zi| − 1
2ρ2 (bT

i θ − zi)
2
)

dzi

= k
2

log(2πρ2)

− log
k∏

i=1

(
a(θ)

{
exp

(
b(θ)2) {1 − erf(b(θ))}

+ exp
(
c(θ)2) {1 − erf(c(θ))} })

(46)

with a(θ) = √
πρ2/2 exp

(−(bT
i θ)2/(2ρ2)

)
, b(θ) =√

ρ2/2(τ − bT
i θ/ρ2), c(θ) = √

ρ2/2(τ + bT
i θ/ρ2) and bi ∈ R

d

Table 2. Illustration of the bound derived in (40) for the marginal posterior πρ

depicted in Section 5.2.

ρ Cα Cρ
α

∫
Cρ

α
π(θ1)dθ1 Iρ

α

10−3 [−0.47, 1.24] [−0.47, 1.24] 0.95 [0.949, 0.951]
10−2 idem [−0.47, 1.24] 0.95 [0.948, 0.952]
10−1 idem [−0.47, 1.24] 0.95 [0.88, 1]
100 idem [−0.47, 1.37] 0.96 [0.34, 1]

NOTE: The (1-α)-credibility intervals Cα and Cρ
α are the highest posterior density

regions associated to each density with α = 0.05.

standing for the ith row of B. Note that in more general cases
where gρ has no closed form, one can estimate it by a Monte
Carlo approximation.

Figure 5 shows the behavior of the regularized potential gρ

defined in (46) for several values of the parameter ρ along with
the associated smoothed prior and posterior distributions. For
simplicity and pedagogical reasons, the univariate case corre-
sponding to θ = θ1 ∈ R and B = 1 has been considered.
The regularization parameter τ has been set to τ = 1. The
contours of the shaded area correspond to g + Lρ and g + Uρ .
The potential gρ is a smooth approximation of the potential
g associated to the initial prior as expected, see Property (iv)
in Proposition 1. Note that the inequalities derived in (36)
are verified. Although this approximation seems similar to the
Moreau–Yosida regularization of a nonsmooth potential func-
tion (Combettes and Pesquet 2011), the rationale behind this
approximation is different. Indeed, the Moreau–Yosida enve-
lope stands for a particular instance of the infimal convolution
between two convex functions (an initial potential and a Gaus-
sian one). On the other hand, gρ is the potential associated to
a smoothed density obtained by convolution with a Gaussian
kernel. In addition, the third row of Figure 5 shows the form of
the posterior of θ1 defined in (45) for y = 1, x = 2, and σ =
1 and derived from the smoothed prior distributions shown
in Figure 5. For sufficiently small values of ρ, the marginal
πρ stands for a quite accurate approximation of the original
target π .

Table 2 illustrates the bounds derived in (40) for ρ ∈{
1, 10−1, 10−2, 10−3}. For each case, the values of the bounds

are summarized in the interval

Iρ
α = [(1 − α)Nρ/D−d(−Lf ρ), min(1, (1 − α)Nρ/D−d(Lf ρ)],

(47)

and the real coverage
∫
Cρ

α
π(θ1)dθ1 is also reported. The (1 −

α)-credibility intervals Cα and Cρ
α have been chosen to be

the highest posterior density regions associated to each den-
sity with α = 0.05. Note that the theoretical coverage inter-
val Iρ

α becomes informative only if ρ is sufficiently small
which is not surprising since the assumptions on the poten-
tial of πρ are weak. Indeed, the form of the density (e.g.
symmetry or unimodality) is not taken into account in the
derived bounds. Regarding the empirical value of the coverage∫
Cρ

α
π(θ1)dθ1, we emphasize that the marginal πρ stands for

a conservative approximation of π in this example. Indeed,
in each case, the (1-α)-credibility interval under πρ denoted
Cρ

α covers at least 100(1 − α)% of the probability mass
under π .
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Figure 5. From left to right, ρ = 0.01, ρ = 0.1, and ρ = 1. (1st row) Behaviors of g (blue) and gρ (orange) where the contours of the shaded area correspond to g + Lρ

and g + Uρ ; (2nd row) the corresponding normalized smoothed prior densities proportional to exp(−g) and exp(−gρ); (3rd row) posterior densities πρ w.r.t. ρ.

5.3. Illustration on an Image Inpainting Problem

We illustrate here the correctness of the proposed approach on a
multidimensional and non-Gaussian example which classically
appears in image processing. To this purpose, we consider the
observation of a damaged and noisy image y ∈ R

n (represented
as a vector by lexicographic ordering) related to the unknown
original image θ ∈ R

d by the linear model

y = Hθ + ε, ε ∼ N (0n, σ 2In), (48)

where n < d, H ∈ R
n×d stands for a decimation binary matrix.

The dimension d being typically large (e.g., 103 ≤ d ≤ 109),
these problems require scalable inference algorithms. Since the
matrix H is not invertible, the linear inverse problem (48) is
ill-posed. To cope with this issue, we assign the total variation

prior distribution to the unknown parameter θ , leading to the
posterior distribution

π(θ |y) ∝ exp

⎛
⎝− 1

2σ 2
∥∥y − Hθ

∥∥2
2 − τ

∑
1≤i≤d

‖(Dθ)i‖2

⎞
⎠ ,

(49)
where τ > 0 is a regularization parameter, Dθ = (D1θ , D2θ) ∈
R

2×d is the two-dimensional discrete gradient associated to
the image θ and the notation Mi stands for the ith column
of the matrix M, see Chambolle et al. (2010) for more details
about the total variation regularization. The presence of the
operator D and the nondifferentiability of the total varia-
tion norm rule out the use of common data augmentation
schemes and simulation-based algorithms (e.g., Hamiltonian
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Figure 6. From left to right: original image, minimum mean square estimate (MMSE) under πρ and absolute bias between the posterior means under πρ and π .

and Langevin Monte Carlo methods). Possible surrogates are
proximal MCMC methods (Pereyra 2016; Durmus, Moulines,
and Pereyra 2018) which replace the nondifferentiable posterior
distribution by a smooth approximation based on the proximity
operator (Combettes and Pesquet 2011) of the total variation
norm. However, the latter does not admit a closed-form expres-
sion and iterative routines are commonly used to approximate
the latter (Chambolle 2004) leading to higher computational
costs.

To mitigate these issues, we propose to rely on a particular
instance of AXDA by smoothing the total variation prior with
a Gaussian term, leading to the approximate joint posterior
density

πρ(θ , z|y) ∝ exp
(

− 1
2σ 2

∥∥y − Hθ
∥∥2

2 − τ
∑

1≤i≤d
‖Zi‖2

− 1
2ρ2 ‖Z − Dθ‖2

2

)
, (50)

where Z = (z1, z2) ∈ R
2×d. By relying on (50), the infer-

ence is now simplified and can be conducted with a Gibbs
sampler, see Section 4 in the supplementary materials. Since
ker(H) ∩ ker(D) = {0d}, the conditional posterior distribu-
tion of θ is a nondegenerate multivariate Gaussian distribution.
Samples from the latter can be obtained efficiently with the
two-dimensional discrete Fourier transform by exploiting the
periodic boundary conditions for θ (Wang et al. 2008; Marnissi
et al. 2018). On the other hand, samples from πρ(Z|θ) can be
drawn efficiently using exact data augmentation, see Kyung et al.
(2010). All the inference details are given in Section 4 of the
supplementary materials.

We illustrate the proposed approximate model πρ by consid-
ering the Shepp–Logan phantom magnetic resonance image of
size 100 × 100 (d = 104), see Figure 6. We artificially damaged
and added noise to this image to build a noisy observation y con-
sisting of 90% randomly selected pixels of the initial image. The
standard deviation of the Gaussian noise and the regularization
parameter have been set to σ = 7 × 10−2 (corresponding to a
SNR of 58 dB) and τ = 5, respectively. The tolerance parameter
has been set to ρ = 0.1.

To assess the bias of the proposed approach, we imple-
mented the Moreau–Yosida Metropolis-adjusted Langevin algo-
rithm (MYMALA) of Durmus, Moulines, and Pereyra (2018),
specifically designed to sample exactly from high-dimensional
and non-smooth posterior distributions. For all the MCMC
algorithms, the initialization has been set to θ [0] = 0d. We
generated 105 samples and kept the last 5 × 104 ones.

Figure 6 shows the minimum mean square estimate (MMSE)
under πρ along with the original image. One can denote that
the MMSE under πρ is visually similar to the original image
and hence coherent with the reconstruction task. The relative
residual error between the former and the MMSE under π is of
order 2%. The main differences are located on the boundaries
of the image, as depicted in the figure on the left which shows
the absolute difference between the pixels of the two posterior
means Eπ (θ) and Eπρ (θ).

To emphasize the correctness of the proposed approach
beyond the comparison between pointwise estimates, we also
paid attention to the comparison between posterior credibility
sets induced by both π and πρ . To this purpose, we considered
the highest posterior density region given by

C�
α = {θ ∈ R

d | f (θ) ≤ γα}, (51)

where γα ∈ R is such that
∫
C�

α
π(θ |y)dθ = 1 − α and f is the

potential function associated to π(θ |y).
Figure 7 shows the different values of the scalar summary γα

estimated using π and the scalar γ
ρ
α estimated using πρ for α ∈

[0.01, 0.99]. Note that the approximation error associated to γα

is of order 2.6% whatever the value of α, which supports the use
of πρ to conduct Bayesian uncertainty analysis in this problem.
After the burn-in period, the efficiency of the Gibbs algorithm
used to sample from πρ has been measured by comparing the
effective sample size (ESS) associated to the slowest component
of θ to the one obtained with MYMALA. We found that the two
ESS were roughly similar but the cost per iteration of the Gibbs
sampler (0.079 sec/iteration) is almost two times lower than that
of MYMALA (0.144 sec/iteration).1 In addition, the number of
iterations required to reach high-probability regions is much less
important for the Gibbs sampler than for MYMALA, showing
the interest of AXDA, see Figure 7.

6. Conclusion

This article presented a unifying framework for AXDA schemes.
AXDA introduces approximate densities to simplify the infer-
ence. By building on existing works which considered special
instances of AXDA, we illustrate potential benefits that can
be inherited by the proposed framework such as distributed
computations, robustness or sophisticated inference schemes
from the ABC literature. On top of these qualitative properties,
we derived a set of theoretical guarantees on the bias involved in

1Both algorithms have been implemented in Matlab with the same level of
efficiency.
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Figure 7. (Left) Relative error between the threshold value estimated with π denoted γα and the one estimated with πρ denoted γ
ρ
α and (right) potential f = − log π

w.r.t. the number of iterations t for both MYMALA and the Gibbs sampler targeting πρ .

the proposed methodology. The latter encompass a large class
of AXDA models and a detailed nonasymptotic analysis has
been done for Gaussian smoothing. These results have been
illustrated on several cases that can arise in statistical learning
or signal processing showing the broad scope of application of
the proposed approach. In practice, we emphasize that AXDA
models can remarkably improve the inference task in big data
and high-dimensional settings. In summary, at the price of an
approximation which comes with theoretical guarantees, AXDA
approaches appear to be a general, systematic and efficient way
to conduct simple inference in a wide variety of large-scale prob-
lems. They provide accurate estimates with relevant confidence
intervals that are crucial in many applications, in particular
when no ground truth is available.

Supplementary Materials

Appendices: The supplementary materials include the proofs of Theo-
rems 1 and 2; Propositions 1–5; and Corollary 1 and 3. It also includes
additional details about standard kernels and Bregman divergences,
inference details associated to the image inpainting example in Sec-
tion 5.3 and derivations of classical inference algorithms to target AXDA
models. (supplementary_material.pdf, pdf file)

Package for AXDA: The computer code associated to the illustrations and
experiments described in this article is also available online. More
precisely, the package “AXDA” contains a Python jupyter notebook to
reproduce all the tables and figures of the article and a Matlab-code
associated to the image inpainting example along with a README file.
(axda.zip, zipped file)
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