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Abstract

Performing reliable Bayesian inference on a big
data scale is becoming a keystone in the modern
era of machine learning. A workhorse class of
methods to achieve this task are Markov chain
Monte Carlo (MCMC) algorithms and their de-
sign to handle distributed datasets has been the
subject of many works. However, existing meth-
ods are not completely either reliable or computa-
tionally efficient. In this paper, we propose to fill
this gap in the case where the dataset is partitioned
and stored on computing nodes within a cluster
under a master/slaves architecture. We derive a
user-friendly centralised distributed MCMC algo-
rithm with provable scaling in high-dimensional
settings. We illustrate the relevance of the pro-
posed methodology on both synthetic and real
data experiments.

1. Introduction

In the current machine learning era, data acquisition has seen
significant progress due to rapid technological advances
which now allow for more accurate, cheaper and faster data
storage and collection. This data quest is motivated by
modern machine learning techniques and algorithms which
are now well-proven and have become common tools for
data analysis. In most cases, the empirical success of these
methods are based on a very large sample size (Bardenet
et al., 2017; Bottou et al., 2018). This need for data is also
theoretically justified by data probabilistic modelling which
asserts that under appropriate conditions, the more data can
be processed, the more accurate the inference can be per-
formed. However, in recent years, several challenges have
emerged regarding the use and access to data in mainstream
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machine learning methods. Indeed, first the amount of data
is now so large that it has outpaced the increase in com-
putation power of computing resources (Verbraeken et al.,
2020). Second, in many modern applications, data storage
and/or use are not on a single machine but shared across
several units (Raicu et al., 2006; Bernstein & Newcomer,
2009). Third, life privacy is becoming a prime concern
for many users of machine learning applications who are
therefore asking for methods preserving data anonymity
(Shokri & Shmatikov, 2015; Abadi et al., 2016). Distributed
machine learning aims at tackling these issues. One of its
popular paradigms, referred to as data-parallel approach, is
to consider that the training data are divided across multiple
machines. Each of these units constitutes a worker node
of a computing network and can perform a local inference
based on the data it has access. Regarding the choice of the
network, several options and frameworks have been consid-
ered. We focus here on the master/slaves architecture where
the worker nodes communicate with each other through a
device called the master node.

Under this framework, we are interested in carrying
Bayesian inference about a parameter § € R? based on
observed data {y }}'_, € Y™ (Robert, 2001). The dataset
is assumed to be partitioned into S shards and stored on
S machines among a collection of b worker nodes. The
subset of observations associated to worker 7 € [b] is de-
noted by D;, where [b] = {1,...,b}. Potentially, D; = {0}
ifi € [S+1:0]forb > S, where we use the notation
[S+1:0 ={S+1,...,b}. The posterior distribution
of interest is assumed to admit a density with respect to
(w.r.t.) the d-dimensional Lebesgue measure which fac-
torises across workers, i.e.,

b
71'(9 | y1:n) _ Z;l Heri(AiO) ’

=1

)

where Z, = [,q [T, e~ V(41948 is a normalisation con-
stant and A; € R%*? are matrices that might act on the
parameter of interest. For ¢ € [b], the potential function
U; : R% — R is assumed to depend only on the subset of
observations D;. Note that fori € [S+1:0],b > S, U;
does not depend on the data but only on the prior. For the
sake of brevity, the dependency of m w.r.t. the observations
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{D;}’_, is notationally omitted.

To sample from 7 given by (1) in a distributed fashion, a
large number of approximate methods have been proposed
in the past ten years (Johnson et al., 2013; Neiswanger et al.,
2014; Ahn et al., 2014; Rabinovich et al., 2015; Scott et al.,
2016; Hasenclever et al., 2017; Nemeth & Sherlock, 2018;
Chowdhury & Jermaine, 2018; Bui et al., 2018; Rendell
et al., 2020; Vehtari et al., 2020). Despite multiple research
lines, to the best of authors’ knowledge, none of these pro-
posals has been proven to be satisfactory. Indeed, the lat-
ter are not completely either computationally efficient in
high-dimensional settings, reliable or theoretically grounded
(Jordan et al., 2019).

This work is an attempt to fill this gap. To this purpose,
we follow the data augmentation approach introduced in
Vono et al. (2020b) and referred to as asymptotically ex-
act data augmentation (AXDA). Given a tolerance param-
eter p € R%, the main idea behind this methodology is
to consider a joint distribution II, on the extended state
space R% x []°_, R% such that IT, has a density w.r.. the
Lebesgue measure of the form (0, z1.5) — HLI I1,(0, 2;).
11, is carefully designed so that its marginal w.r.t. 8, de-
noted by 7, is a proxy of (1) for which quantitative ap-
proximation bounds can be derived and are controlled by
p. In addition, for any ¢ € [b], IT;(6,2;) only depends
on the data D;, and therefore plays a role similar to the lo-
cal posterior 7 (8) oc e~ UVi(A49) in popular embarrassingly
parallel approaches (Neiswanger et al., 2014; Scott et al.,
2016). However, compared to this class of methods, AXDA
does not seek for each worker to sample from Hip. Follow-
ing a data augmentation strategy based on Gibbs sampling,
AXDA instead requires each worker to sample from the
conditional distribution II,(z;|@) and to communicate its
sample to the master. 11, is generally chosen such that sam-
pling from I, (0|z1.;) is easy and does not require to access
to the data. However, two main challenges remain: one
has to sample efficiently from the conditional distribution
I1,(2;|0) for ¢ € [b] and avoid too frequent communication
rounds on the master. Existing AXDA-based approaches
unfortunately do not fulfill these important requirements
(Vono et al., 2019b; Rendell et al., 2020). In this work, we
leverage these issues by considering the use of the Langevin
Monte Carlo (LMC) algorithm to approximately sample
from II,(z;|0) (Rossky et al., 1978; Roberts & Tweedie,
1996).

Our contributions are summarised in what follows. (1) We
introduce in Section 2 a new methodology called Distributed
Gibbs using Langevin Monte Carlo (DG-LMC). (2) Im-
portantly, we provide in Section 3 a detailed quantitative
analysis of the induced bias and show explicit convergence
results. This stands for our main contribution and to the
best of authors’ knowledge, this theoretical study is one of

the most complete among existing works which focused on
distributed Bayesian machine learning with a master/slaves
architecture. In particular, we discuss the complexity of
our algorithm, the choice of hyperparameters, and provide
practitioners with simple prescriptions to tune them. Further,
we provide a thorough comparison of our method with ex-
isting approaches in Section 4. (3) Finally, in Section 5, we
show the benefits of the proposed sampler over popular and
recent distributed MCMC algorithms on several numerical
experiments. Given the limited page count, all the proofs
are postponed to the supplementary material.

Notations and conventions. The Euclidean norm on R? is
denoted by || - ||. For n > 1, we refer to {1,...,n} with
the notation [n] and for i1,i2 € N, i3 < s, {i1,...,i2}
with the notation [i1 : i3]. For 0 < ¢ < j and (ug; k €
{i,---, 7}, we use the notation u;.; to refer to the vector
', -, ujT]T. We denote by N(m, 32) the Gaussian dis-
tribution with mean vector m and covariance matrix 3. For
a given matrix M € R?¥9, we denote its smallest eigen-
value by Apin(M). We denote by B(R?) the Borel o-field
of RZ. We define the Wasserstein distance of order 2 for any
probability measures j, v on R? with finite 2-moment by
Wali,v) = (fcerium) Jprse [0 — 6'[24C(6,8)),
where 7T (u, v) is the set of transference plans of y and v.

2. Distributed Gibbs using Langevin Monte
Carlo (DG-LMC)

In this section, we present the proposed methodology which
is based on the AXDA statistical framework and the popular
LMC algorithm.

AXDA relies on the decomposition of the target distribution
« given in (1) to introduce an extended distribution which
enjoys favorable properties for distributed computations.
This distribution is defined on the state space RixZ,7Z=
Hle R% and admits a density w.r.t. the Lebesgue measure
given, for any @ € R?, z1;, € Z, by
b
(6, 214) o [ [115(6, 2:) , 2)
i=1
where I15(0,2;) = exp(—Ui(z;) — lzi~A:01%/2,,) and
p = {pitt_, € Ri is a sequence of positive tolerance
parameters. Note that f[fo is not necessarily a probability
density function. Actually, for II, to define a proper prob-
ability density, i.e. [pa , [T, II5(0,2;)d0dz1, < oo,
some conditions are required.
H1. There exists b/ € [b — 1] such that the follow-
ing conditions hold: min;cpy)inf, cpa, Ui(z;) > —oq,
and max;e(py +1:] Jpa; € V%) dz; < oo, In addition,

b o .
Dbt A]'TA]' is invertible.

The next result shows that these mild assumptions are suf-
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ficient to guarantee that the extended model (2) is well-
defined.

Proposition 1. Assume HI. Then, for any p € Rﬁ_, I, in
(2) is a proper density.

The data augmentation scheme (2) is approximate in the
sense that the 8-marginal defined by

7,(0) = /Z 11,(8, 21) 21 | 3)

coincides with (1) only in the limiting case max;ec [y p; +0
(Schefté, 1947). For a fixed p, quantitative results on the
induced bias in total variation distance can be found in Vono
et al. (2019b). The main benefit of working with (2) is
that conditionally upon 6, auxiliary variables {z;}?_, are
independent. Therefore, they can be sampled in parallel
within a Gibbs sampler. For i € [b], the conditional density
of z; given 0 writes

T, (2; | 0) o exp (— Us(z;) — 12200) )

On the other hand, the conditional distribution of 8 given
Z1.p 1S a Gaussian distribution

I,(6 | z14) = N(p(214), Q") , (5)

with precision matrix Q = Zle A A,/p; and mean vec-
tor pu(z1:) = Q1 320_, Al 2;/p;. Under H1, note that Q
is invertible and therefore this conditional Gaussian distribu-
tion is well-defined. Since sampling from high-dimensional
Gaussian distributions can be performed efficiently (Vono
et al., 2020a), this Gibbs sampling scheme is interesting
as long as sampling from (4) is cheap. Vono et al. (2019b)
proposed the use of a rejection sampling step requiring to
set p; = O(1/d;). When d; > 1, this condition unfortu-
nately leads to prohibitive computational costs and hence
prevents its practical use for general Bayesian inference
problems. Instead of sampling exactly from (4), Rendell
et al. (2020) rather proposed to use Metropolis-Hastings
algorithms. However, it is not clear whether this choice
indeed leads to efficient sampling schemes. To tackle these
issues, we propose to build upon LMC to end up with a
distributed MCMC algorithm which is both simple to imple-
ment, efficient and amenable to a theoretical study. LMC
stands for a popular way to approximately generate samples
from a given distribution based on the Euler-Maruyama dis-
cretisation scheme of the overdamped Langevin stochastic
differential equation (Roberts & Tweedie, 1996). At itera-
tion ¢ of the considered Gibbs sampling scheme and given
a current parameter 6", LMC applied to (4) considers, for
i € [b], the recursion

2 = (1-2)2() + 2 4,00, VU, (2") + V27:€ "
where ~; > 0 is a fixed step-size and (!;“Ek))keN_,ie[b] a se-
quence of independent and identically distributed (i.i.d.)

Algorithm 1 Distributed Gibbs using LMC (DG-LMC)
Input: burn-in T};; for ¢ € [b], tolerance parameters
pi > 0, step-sizes v; € (0, p;/(1 + p; M;)], local LMC
steps IV; > 1.
Initialise ) and Zgog
fort=0toT —1do

/l sSampling from II,(z1.5|6)

for : = 1 tob // In parallel on the b
workers do
ul(_o) _ th)
fork=0toN; —1 // N; local LMC steps
do

61(;k7t) ~ N (Odi ) Idl)
= (12l + 24,00 90 uf?)

uf ) = g+ /27600 see ()
end for

Z§t+1) _ uz(‘Ni)
end for

/l sampling from II,(0|z1.)

ot o N(u(zﬁ?l)), Q_1> /l See (5)
end for
Output: samples {O(t)}szbi_l.
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Figure 1. Illustration of one global iteration of Algorithm 1. For
each worker, the width of the green box represents the amount of
time required to perform one LMC step.

d-dimensional standard Gaussian random variables. Only
using a single step of LMC on each worker might incur im-
portant communication costs. To mitigate the latter while in-
creasing the proportion of time spent on exploring the state-
space, we instead allow each worker to perform N; > 1
LMC steps (Dieuleveut & Patel, 2019; Rendell et al., 2020).
Letting N, varies across workers prevents Algorithm 1 to
suffer from a significant block-by-the-slowest delay in cases
where the response times of the workers are unbalanced
(Ahn et al., 2014). The proposed algorithm, coined Dis-
tributed Gibbs using Langevin Monte Carlo (DG-LMC), is
depicted in Algorithm 1 and illustrated in Figure 1.

3. Detailed analysis of DG-LMC

In this section, we derive quantitative bias and convergence
results for DG-LMC and show that its mixing time only
scales quadratically w.r.t. the dimension d. We also discuss
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the choice of hyperparameters and provide guidelines to
tune them.

3.1. Non-Asymptotic Analysis

The scope of our analysis will focus on smooth and strongly
log-concave target posterior distributions 7. While these
assumptions may be restrictive in practice, they allow for a
detailed theoretical study of the proposed algorithm.

H2. (i) Foranyi € [b], U; is twice continuously differen-
tiable and sup, cga; ||V2U;(z;)|| < M;.

(ii) Forany i € [b], U; is m;-strongly convex: there exists
m; > 0 such that m;14, = V2U,.

Under these assumptions, it is shown in Lemma S16 in the
supplementary material that — log 7 is strongly convex with
constant

My = Amin(Xg_; miAT Ay) . (6)

Behind the use of LMC, the main motivation is to end up
with a simple hybrid Gibbs sampler amenable to a non-
asymptotic theoretical analysis based on previous works
(Durmus & Moulines, 2019; Dalalyan & Karagulyan, 2019).
In the following, this study is carried out using the Wasser-
stein distance of order 2.

3.1.1. CONVERGENCE RESULTS

DG-LMC introduced in Algorithm 1 defines a homoge-
neous Markov chain (V;)ien = (0%, Zt):en with realisa-
tions (0, z%)teN. We denote by P, 4 v the Markov ker-
nel associated with (V;);cn. Since no Metropolis-Hastings
step is used in combination with LMC, the proposed algo-
rithm does not fall into the class of Metropolis-within-Gibbs
samplers (Roberts & Rosenthal, 2006). Therefore, a first
step is to show that P, o n admits an unique invariant dis-
tribution and is geometrically ergodic. We proceed via an
appropriate synchronous coupling which reduces the con-
vergence analysis of (V;).en to that of the marginal process
(Z¢)ten. While the proof of the convergence of (Z;)ten
shares some similarities with LMC (Durmus & Moulines,
2019), the analysis of (Z;)¢en is much more involved and
especially in the case max;cpp) IV; > 1. We believe that the
proof techniques we developed to show the next result can
be useful to the study of other MCMC approaches based on
LMC.

Proposition 2. Assume H I-H 2 and let ¢ > 0
and v = A{v}iy N = (N}, satisfying
maXiep) Vi < ¥ mingep{Nivi}/ maxep {Nivi} = ¢
and max;ep { Nivi} < Cy where 7, Cy are explicit con-
stants only depending on (m;, M;, pi)icy] 12 Then, there
exists a probability measure 11, o, n such that 11, o N is

'When N = 1, C1 = 7 = 1/ max;ep {M; + p; '}.
When max;e[p) Vi > 1, C1 is of order min;gy) pf when
max;e(p) i — 0, see Lemma S12 in the supplement.

invariant for Py, o n. Moreover there exists Co > 0 such
that for any integer t > 0 and v = (0,z) € R? x Z, we
have

Wal8y Py g nTpy,) < G- (1= min{Niyimi}/2)"

X Wg(év, Hp777]\]) .

Explicit expressions for C1 and Cy are given in Proposition
S13 in the supplementary material. Finally, if N = N1,
for N > 1, thenll, v N =1, ~ 1,

We now discuss Proposition 2. If we set, for any ¢ € [b],
N; = 1, the convergence rate in Proposition 2 becomes
equal to 1 — min;e{ysm;}/2. In this specific case,
we show in Proposition S5 in the supplementary material
that DG-LMC actually admits the tighter convergence rate
1 — min;epp){7ims} which simply corresponds to the rate
at which the slowest LMC conditional kernel converges. On
the other hand, when max;cp) N; > 1, the convergence
of P, n towards II, o n only holds if max;ep{Niv;}
is sufficiently small. This condition is necessary to en-
sure a contraction in W5 and can be understood intuitively
as follows in the case where N = N1, and v = 71,.
Given two vectors (6, 6),) and an appropriate coupling
(Zk41, Zy,41), We can show that Zy 1 — Z; , involves
two competing terms: one keeping Z; 1 — Zj,; close to
Zy, — Z;, and another one driving Zj,1 — Zj, | away from
01 — 0;. (and therefore of Z, — Z},) as N increases. This
implies that /N stands for a trade-off and the product N~
cannot be arbitrarily chosen. Finally, it is worth mentioning
that the tolerance parameters {p; };c[p) implicitly drive the
convergence rate of DG-LMC. In the case N; = 1, a suffi-
cient condition on the step-sizes to ensure a contraction is
vi <2/(M; +m; + 1/p;). We can denote that the smaller
pi, the smaller ~; and the slower the convergence.

Starting from the results of Proposition 2, we can analyse the
convergence properties of DG-LMC. We specify our result
to the case where we take for the specific initial distribution

1y =8z @ Tp(:|2") (7

where z* = ([A0"]T,--- [A0" )T, 0" =
arg min{— log 7} and I, (-|z*) is defined in (5). Note that
sampling from p7, is straightforward and simply consists in
setting z(®) = z* and drawing 8*) from II,(- | z*). For
t > 1, we consider the marginal law of 6, initialised at
v* with distribution 7, and denote it I't.. As mentioned
previously, the proposed approach relies on two approxima-
tions which both come with some bias we need to control.
This naturally brings us to consider the following inequality
based on the triangular inequality and the definition of the
Wasserstein distance:

Wy(Ty,., m) < W2(HZP,§,—Y,Na Hp~,N) + Wo(Ilp 4 N, 11p)
+ W2 (7Tpa 7T> ) (8)
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where II, , ~, II, and 7, are defined in Proposition 2, (2)
and (3), respectively. In Proposition S14 in the supplemen-
tary material, we provide an upper bound on the first term
on the right hand side based on Proposition 2. In the next
section, we focus on controlling the last two terms on the
right hand side.

3.1.2. QUANTITATIVE BOUNDS ON THE BIAS

The error term Wy(m,,m) in (8) is related to the under-
lying AXDA framework which induces an approximate
posterior representation 7,. It can be controlled by the
sequence of positive tolerance parameters {p; }°_;. By de-
noting p = max;e ] Pi, Proposition 3 shows that this error
can be quantitatively assessed and is of order O(p) for suffi-
ciently small values of this parameter.

Proposition 3. Assume HI, H2. Let A = [A],...,A]]"
and denote o, = || AT A || max;cpp {M?}/my, where my
is defined in (6). Then, for any p < c? /12,

Wo(mp, m) < \/2/my max(Ap, By) ,

where A, = dO(p) and B, = d"*O(p) for p | 0. Ex-
plicit expressions for Ay, B, are given in Section S3 in the
supplementary material.

In the case where 7 is Gaussian, the approximate distribu-
tion 7, admits an explicit expression and is Gaussian as
well (e.g. when b = 1, the mean is the same and the co-
variance matrix is inflated by a factor pI;), see for instance
Rendell et al. (2020, Section S2) and Vono et al. (2020b,
Section 5.1). Hence, an explicit expression for W (7, 7)
can be derived. Based on this result, we can check that the
upper bound provided by Proposition 3 matches the same
asymptotics as p — 0 and d — oo.

The second source of approximation error is induced by the
use of LMC within Algorithm 1 to target the conditional dis-
tribution I1,(z1.; | @) in (4). The stationary distribution of
P, .~ whose existence is ensured in Proposition 2 differs
from II,. The associated bias is assessed quantitatively in
Proposition 4.

Proposition 4. Assume HI-H2. For any i € [b], define
M; = M; +1/p; and let vy € (R%.)*, N € (N*)® such that
foranyi € [b],

vi < i[a(mi/Mi)Q/maX(mi/Mi)z , &)

m;
- ~ - m
40M? ic i€b]
Lmi min{mi/Z\NL‘}Q/(QO*W]\N@2 max{mi/]\;li}2)J .
ic[b) i€[b]

(10)

N;

Then, we have

b
W22 (HP»%Na Hp) < (s Z dz’%Mf ,
=1

where C3 > 0 only depends of (m;, M;, A;, p;)°_, and is
explicitly given in Proposition S29 in the supplementary
material.

With the notation ¥ = max;¢[3] i, Proposition 4 implies
that Wa(I1p, 1T, ,n) < O(F*)(327_, di)"* for 5 | 0.
Note that this result is in line with Durmus & Moulines
(2019, Corollary 7) and can be improved under further regu-
larity assumptions on U, as shown below.

H3. U is three times continuously differentiable and there
exists L; > 0 such that for all z;,2), € R%, || V2U;(z;) —
V2Ui(z)|| < Lillzi — 2.

Proposition 5. Assume HI-H2-H3. For any i € [b], define
M; = M; +1/p; and let v € (R%)b, N € (N*)° such that
forany i € [b], (9) and (10) hold. Then, we have

W22 (Hp,'y,N7 Hp) <Cy Z dz,-yl(l/M? + rYleQ) )
1€[b]

where Cy > 0 only depends on (m;, M;, L;, A;, p;)°_, and
is explicitly given in Proposition S33 in the supplementary
material.

3.1.3. MIXING TIME WITH EXPLICIT DEPENDENCIES

Based on explicit non-asymptotic bounds shown in Proposi-
tions 2, 3 and 4 and the decomposition (8), we are now able
to analyse the scaling of Algorithm 1 in high dimension.
Given a prescribed precision € > 0 and an initial condition
v* with distribution 4, given in (7), we define the e-mixing
time associated to I'y« by
tmix(€; V") = min {t eEN: Wg(l—‘f,*,ﬂ> < 5} .

This quantity stands for the minimum number of DG-LMC
iterations such that the 8-marginal distribution is at most at
an € Ws-distance from the initial target 7. Under the condi-
tion that b max;epp) d; = O(d) and by assuming for simplic-
ity that for any ¢ € [b], m; = m,M; = M,L; = L,p; =
p,v: = v and N; = N, Table 1 gathers the dependencies
w.r.t. d and € of the parameters involved in Algorithm 1
and of ¢,ix (g5 v*) to get a Wa-error of at most . Note that
the mixing time of Algorithm 1 scales at most quadratically
(up to polylogarithmic factors) in the dimension. When H
3 holds, we can see that the number of local iterations be-
comes independent of d and € which leads to a total number
of gradient evaluations with better dependencies w.r.t. to
these quantities. Up to the authors’ knowledge, these ex-
plicit results are the first among the centralised distributed
MCMC literature and in particular give the dependency
w.r.t. d and € of the number of local LMC iterations on
each worker. Overall, the proposed approach appears as a
scalable and reliable alternative for high-dimensional and
distributed Bayesian inference.
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Table 1. For the specific initialisation v* with distribution p5, given in (7), dependencies w.r.t. d and € of the parameters involved in

Algorithm 1 and of tmix(¢; v*) to get a Wa-error of at most &.

Assumptions Pe Ye N, tmix (&5 VF) Nb. of gradient evaluations
HL 12 d O(d™) 0@d=®) 0O(d)  O(dlog(d)) O(d’ log(d))

e 0@ O') 0?2 O ?log(e)]) O(e*[1og(¢)])
pps ¢ 0@ 0@ 0() o) O(d log(d))

e O 0 01) O ?loge)) O(?[log(e)])

3.2. DG-LMC in Practice: Guidelines for Practitioners

We now discuss practical guidelines for setting the values
of hyperparameters involved in Algorithm 1. Based on
Proposition 2, we theoretically show an optimal choice of
order N;y; < m;p?/(piM; + 1), see Lemma S26 in the
supplementary material. Ideally, within the considered dis-
tributed setting, the optimal value for (Nj, ;)5 would
boil down to optimise the value of max;e;{V;;} under
the constraints derived in Proposition 2 combined with com-
munication considerations. In particular, this would imply
a comprehensive modelling of the communication costs in-
cluding I/O bandwiths constraints. These optimisation tasks
fall outside the scope of the present paper and therefore we
let the search of optimal values for future works. Since our
aim here is to provide practitioners with simple prescrip-
tions, we rather focus on general rules involving tractable
quantities.

3.2.1. SELECTION OF 7 AND p

From Durmus & Moulines (2017) and references therein,
a simple sufficient condition on step-sizes v = {y;}_,
to guarantee the stability of LMC is v; < p;/(piM; + 1)
for i € [b]. Both the values of 7; and p; are subject
to a bias-variance trade-off. More precisely, large val-
ues yield a Markov chain with small estimation variance
but high asymptotic bias. Conversely, small values pro-
duce a Markov chain with small asymptotic bias but which
requires a large number of iterations to obtain a stable
estimator. We propose to mitigate this trade-off by set-
ting +; to a reasonably large value, that is for i € [b],

€ [0.1p;/(piM; + 1),0.5p;/(p:M; + 1)]. Since ~; sat-
urates to 1/M; when p; — oo, there is no computational
advantage to choose very large values for p;. Based on sev-
eral numerical studies, we found that setting p; of the order
of 1/M; was a good compromise between computational
efficiency and asymptotic bias.

3.2.2. N: A TRADE-OFF BETWEEN ASYMPTOTIC BIAS
AND COMMUNICATION OVERHEAD

In a similar vein, the choice of N = {N;}’_, also stands
for a trade-off but here between asymptotic accuracy and
communication costs. Indeed, a large number of local LMC
iterations reduces the communication overhead but at the
expense of a larger asymptotic bias since the master param-
eter is not updated enough. Ahn et al. (2014) proposed to
tune the number of local iterations N; on a given worker
based on the amount of time needed to perform one local
iteration, denoted here by T;. Given an average number of
local iterations N,y,, the authors set N; = ¢; Naygb with
g =T/t sothat b0 Ny = Nayg. As
mentioned by the aforementioned authors, this choice al-
lows to keep the block-by-the-slowest delay small by letting
fast workers perform more iterations in the same wall-clock
time. Although they showed how to tune N; w.r.t. com-
munication considerations, they let the choice of Nyyg to
the practitioner. Here, we propose a simple guideline to
set N,ye such that IV; stands for a good compromise be-
tween the amount of time spent on exploring the state-space
and communication overhead. As highlighted in the dis-
cussion after Proposition 2, as v; becomes smaller, more
local LMC iterations are required to sufficiently explore
the latent space before the global consensus round on the
master. Assuming for any ¢ € [b] that -y; has been chosen
following our guidelines in Section 3.2.1, this suggests to

set Navg = [(1/0) i) pi/ (vilpiMi + 1])1.

4. Related work

As already mentioned in Section 1, hosts of contributions
have focused on deriving distributed MCMC algorithms
to sample from (1). This section briefly reviews the main
existing research lines and draws a detailed comparison with
the proposed methodology.

4.1. Existing distributed MCMC methods

Existing methodologies are mostly approximate and can
be loosely speaking divided into three groups: one-shot,
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Table 2. Synthetic overview of the main existing distributed MCMC methods under a master-slave architecture. The column Exact means
that the Markov chain defined by the MCMC sampler admits (1) as invariant distribution. The column Comm. overhead reports the
communication frequency. A value of 1 means that the sampler communicates after every iteration. 7" stands for the total number of
iterations and N < T is a tunable parameter to mitigate communication costs. The acronym D-SGLD stands for distributed stochastic

gradient Langevin dynamics.

METHOD TYPE EXACT COMM. OVERHEAD BIAS BOUNDS  SCALING W.R.T. d
WANG & DUNSON (2013) ONE-SHOT X 1/T 4 O(e?)
NEISWANGER ET AL. (2014) ONE-SHOT X 1/T X O(e?)
MINSKER ET AL. (2014) ONE-SHOT X 1/T Vv UNKNOWN
SRIVASTAVA ET AL. (2015) ONE-SHOT X 1/T X UNKNOWN
WANG ET AL. (2015) ONE-SHOT X 1/T Vv O(e?)
SCOTT ET AL. (2016) ONE-SHOT X 1/T X UNKNOWN
NEMETH & SHERLOCK (2018) ONE-SHOT X 1/T X UNKNOWN
JORDAN ET AL. (2019) ONE-SHOT X 1/T N4 UNKNOWN
AHN ET AL. (2014) D-SGLD X 1/N X UNKNOWN
CHEN ET AL. (2016) D-SGLD X 1 Vv UNKNOWN
EL MEKKAOUI ET AL. (2020) D-SGLD X 1/N Vv UNKNOWN
RABINOVICH ET AL. (2015) G. CONSENSUS X 1/N X UNKNOWN
CHOWDHURY & JERMAINE (2018)  G. CONSENSUS Vv 1 N/A UNKNOWN
RENDELL ET AL. (2020) G. CONSENSUS X 1/N Vv UNKNOWN
THIS PAPER G. CONSENSUS X 1/N Vv O(d*log(d))

distributed stochastic gradient MCMC and global consensus
approaches. To ease the understanding, a synthetic overview
of their main characteristics is presented in Table 2.

One-shot approaches stand for communication-efficient
schemes where workers and master only exchange infor-
mation at the very beginning and the end of the sampling
task; similarly to MapReduce schemes (Dean & Ghemawat,
2004). Most of these methods assume that the posterior den-
sity factorises into a product of local posteriors and launch
independent Markov chains across workers to target them.
The local posterior samples are then combined through the
master node using a single final aggregation step. This
step turns to be the milestone of one-shot approaches and
was the topic of multiple contributions (Wang & Dunson,
2013; Neiswanger et al., 2014; Minsker et al., 2014; Sri-
vastava et al., 2015; Scott et al., 2016; Nemeth & Sherlock,
2018). Unfortunately, the latter are either infeasible in high-
dimensional settings or have been shown to yield inaccurate
posterior representations empirically, if the posterior is not
near-Gaussian, or if the local posteriors differ significantly
(Wang et al., 2015; Dai et al., 2019; Rendell et al., 2020).
Alternative schemes have been recently proposed to tackle
these issues but their theoretical scaling w.r.t. the dimension
d is currently unknown (Jordan et al., 2019; Mesquita et al.,
2020).

Albeit popular in the machine learning community, dis-
tributed stochastic gradient MCMC methods (Ahn et al.,
2014) suffer from high variance when the dataset is large
because of the use of stochastic gradients (Brosse et al.,
2018). Some surrogates have been recently proposed to
reduce this variance such as the use of stale or conducive

gradients (Chen et al., 2016; El Mekkaoui et al., 2020).
However, these variance reduction methods require an in-
creasing number of workers for the former and come at the
price of a prohibitive pre-processing step for the latter. In
addition, it is currently unclear whether these methods are
able to generate efficiently accurate samples from a given
target distribution.

Contrary to aforementioned distributed MCMC approaches,
global consensus methods periodically share information
between workers by performing a consensus round between
the master and the workers (Rabinovich et al., 2015; Chowd-
hury & Jermaine, 2018; Vono et al., 2019a; Rendell et al.,
2020). Again, they have been shown to perform well in
practice but their theoretical understanding is currently lim-
ited.

4.2. Comparison with the proposed methodology

Table 2 compares Algorithm 1 with existing approaches
detailed previously. In addition to having a simple imple-
mentation and guidelines, it is worth noticing that DG-LMC
appears to benefit from favorable convergence properties
compared to the other considered methodologies.

We complement this comparison with an informal discus-
sion on the computational and communication complexities
of Algorithm 1. Recall that the dataset is assumed to be
partitioned into .S shards and stored on S workers among
a collection of b computing nodes. Suppose that the s-th
shard has size ng, and let T" be the number of total MCMC
iterations and c¢on the communication cost. In addition,
denote by cg])al the approximate wall-clock time required
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to evaluate U; or its gradient. For the ease of exposition,
we do not discuss the additional overhead due to band-
width restrictions and assume similar computation costs, i.e.,
NcCeyal =~ Nicéi,)al, to perform each local LMC step at each
iteration of Algorithm 1. Under these assumptions, the total
complexity of Algorithm 1 is O(T'[2¢com + N Ceval])- Fol-
lowing the same reasoning, distributed stochastic gradient
Langevin dynamics (D-SGLD) and one-shot approaches ad-
mit complexities of the order O(T'[2¢com + N Covalimb/1s])
and O(T¢eval + 2Ccom), respectively. The integer ny,
stands for the mini-batch size used in D-SGLD. Despite
their very low communication overhead, existing one-shot
approaches are rarely reliable and therefore not necessarily
efficient to sample from 7 given a prescribed computational
budget, see Rendell et al. (2020) for a recent overview. D-
SGLD seems to enjoy a lower complexity than Algorithm 1
when n,,;, is small. Unfortunately, this choice comes with
two main shortcomings: (i) a larger number of iterations T'
to achieve the same precision because of higher variance
of gradient estimators, and (ii) a smaller amount of time
spent on exploration compared to communication latency.
By falling into the global consensus class of methods, the
proposed methodology hence appears as a good compro-
mise between one-shot and D-SGLD algorithms in terms
of both computational complexity and accuracy. Section 5
will enhance the benefits of Algorithm 1 by showing ex-
perimentally better convergence properties and posterior
approximation.

5. Experiments

This section compares numerically DG-LMC with the
most popular and recent centralised distributed MCMC ap-
proaches namely D-SGLD and the global consensus Monte
Carlo (GCMC) algorithm proposed in Rendell et al. (2020).
Since all these approaches share the same communication
latency, this feature is not discussed here.

5.1. Toy Gaussian Example

In this toy example, we first illustrate the behavior of DG-
LMC w.r.t. the number of local iterations which drives the
communication overhead. We consider the conjugate Gaus-
sian model 7(0|y1.,) x N(8]04,20) [T, N(y:|0,%1),
with positive definite matrices g, 1. We set d = 2,
allocate n = 20,000 observations to a cluster made of
b = 10 workers and compare DG-LMC with D-SGLD.
Both MCMC algorithms have been run using the same num-
ber of local iterations IV per worker and for a fixed budget of
T = 100, 000 iterations including a burn-in period equal to
Ty; = 10,000. Regarding DG-LMC, we follow the guide-
lines in Section 3.2.1 and set for all ¢ € [b], A; = I,
pi = 1/(5M;) and ~y; = 0.25p;/(p; M; + 1). On the other
hand, D-SGLD has been run with batch-size n/(10b) and
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Figure 2. Toy Gaussian experiment. (left) NV = 1 local iterations
and (right) N = 10. (top) DG-LMC, (middle) D-SGLD and
(bottom) ACF comparison between DG-LMC and D-SGLD.

a step-size chosen such that the resulting posterior approxi-
mation is similar to that of DG-LMC for N = 1. Figure 2
depicts the results for N = 1 and N = 10 on the left and
right columns, respectively. The top row (resp. middle row)
shows the contours of the b local posteriors in dashed grey,
the contours of the target posterior in red and the 2D his-
togram built with DG-LMC (resp. D-SGLD) samples in
blue (resp. green). When required, a zoomed version of
these figures is depicted at the top right corner. It can be
noted that DG-LMC exhibits better mixing properties while
achieving similar performances as shown by the autocorre-
lation function (ACF) on the bottom row. Furthermore, its
posterior approximation is robust to the choice of N in con-
trast to D-SGLD, which needs further tuning of its step-size
to yield an accurate posterior representation. This feature is
particularly important for distributed computations since N
is directly related to communication costs and might often
change depending upon the hardware architecture.

5.2. Bayesian Logistic Regression

This second experiment considers a more challenging prob-
lem namely Bayesian logistic regression. We use the cov-
type® dataset with d = 54 and containing n = 581,012 ob-
servations partitioned into b = 16 shards. We set N = 10,
T = 200,000, Ty,; = T'/10 for all approaches, and again
used the guidelines in Section 3.2.1 to tune DG-LMC. Un-
der the Bayesian paradigm, we are interested in perform-
ing uncertainty quantification by estimating highest pos-
terior density (HPD) regions. For any o € (0, 1), define
Co = {0 € R%: —log7(0|y1:n) < N} Where 7, € R

www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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Figure 4. Bayesian neural network. (left) probability of the most
probable label for 8§ examples and (right) probability of each label
for a single example.

is chosen such that [, 7(6]y1:,)d0 = 1 — a. For the
three approximate MCMC approaches, we computed the
relative HPD error based on the scalar summary 7, i.e.
[N — ntrue| /ntue where 7E™e has been estimated using the
Metropolis adjusted Langevin algorithm. The parameters of
GCMC and D-SGLD have been chosen such that all MCMC
algorithms achieve similar HPD error. Figure 3 shows that
this error is reasonable and of the order of 1%. Nonethe-
less, one can denote that DG-LMC achieves this precision
level faster than GCMC and D-SGLD due to better mixing
properties. This confirms that the proposed methodology is
indeed efficient and reliable to perform Bayesian analyses
compared to existing popular methodologies.

5.3. Bayesian Neural Network

Up to now, both our theoretical and experimental results
focused on the strongly log-concave scenario and showed
that even in this case, DG-LMC appeared as a competi-
tive alternative. In this last experiment, we propose to end
the study of DG-LMC on an open note without ground
truth by tackling the challenging sampling problem associ-
ated to Bayesian neural networks. We consider the MNIST
training dataset consisting of n = 60, 000 observations par-
titioned into b = 50 shards and such that for any i € [n]
and k € [10], P(y; = k|6, x;) = i where fy, is the k-th
element of o(c(x;] W1 +b1)Wy+by), o(-) is the sigmoid
function, x; are covariates, and W1, Ws, b; and b, are
matrices of size 784x128, 128 x 10, 1x128 and 1x10,
respectively. We set normal priors for each weight matrix
and bias vector, N = 10 and ran DG-LMC with constant hy-
perparameters across workers (p, ) = (0.02,0.005) and D-
SGLD using a step-size of 1075, Exact MCMC approaches
are too computationally costly to launch for this experi-

0.0 0.2 0.4 0.6 0.8 1.0

ment and therefore no ground truth about the true posterior
distribution is available. To this purpose, Figure 4 only
compares the credibility regions associated to the posterior
predictive distribution. Similarly to previous experiments,
we found that D-SGLD was highly sensitive to hyperpa-
rameters choices (step-size and mini-batch size). Except
for a few testing examples, most of conclusions given by
DG-LMC and D-SGLD regarding the predictive uncertainty
coincide. In addition, posterior accuracies on the test set
given by both algorithms are similar.

6. Conclusion

In this paper, a simple algorithm coined DG-LMC has been
introduced for distributed MCMC sampling. In addition,
it has been established that this method inherits favorable
convergence properties and numerical illustrations support
our claims.
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